19
23. Lindner JR. Microbubbles in medical imaging: cur-
rent applications and future directions. Nat Rev Drug
Discov. 2004;3:527–32.
24. Thumar V, Liu J-B, Eisenbrey J. Applications in
Molecular Ultrasound Imaging: Present and Future.
Advanced Ultrasound in Diagnosis and Therapy.
2019;03:062–075.
25. Iravani A, Hicks RJ. Imaging the cancer immune
environment and its response to pharmacologic inter-
vention, part 2: the role of novel pet agents. J Nucl
Med. 2020;61:1553–59.
26. Ahmadzadehfar H, Azgomi K, Hauser S, et al.
68
Ga-PSMA-11 PET as a gatekeeper for the treatment
of metastatic prostate cancer with
223
Ra: proof of con-
cept. J Nucl Med. 2017;58:438–44.
27. Jacobs AH, Winkler A, Castro MG, et al. Human gene
therapy and imaging in neurological diseases. Eur J
Nucl Med Mol Imaging. 2005;32:S358–83.
28. Vemuri P. “Exceptional brain aging” without
Alzheimer’s disease: triggers, accelerators, and the
net sum game. Alzheimers Res Ther. 2018;10:53.
29. Emsen B, Villafane G, David J-P, et al. Clinical impact
of dual-tracer FDOPA and FDG PET/CT for the
evaluation of patients with parkinsonian syndromes.
Medicine. 2020;99:45. (e23060).
30. Srirajaskanthan R, Kayani I, Quigley AM, et al. The
role of
68
Ga-DOTATATE PET in patients with neuro-
endocrine tumors and negative or equivocal ndings
on
111
In-DTPA-octreotide scintigraphy. J Nucl Med.
2010;51:875–82.
31. Catana C, Procissi D, Wu Y, et al. Simultaneous
in vivo positron emission tomography and mag-
netic resonance imaging. Proc Natl Acad Sci U S A.
2008;105:3705–10.
32. Cherry SR. Multimodality in vivo imaging systems:
twice the power or double the trouble? Annu Rev
Biomed Eng. 2006;8:35–62.
33. Cherry SR, Louie AY, Jacobs RE. The integration of
positron emission tomography with magnetic reso-
nance imaging. Proc IEEE. 2008;96:416–38.
34. Culver J, Akers W, Achilefu S. Multimodality molec-
ular imaging with combined optical and SPECT/PET
modalities. J Nucl Med. 2008;49:169–72.
35. Insana MF, Wickline SA. Multimodality biomolecu-
lar imaging. Proc IEEE. 2008;96:378–81.
36. Townsend DT. Dual-modality imaging: combining
anatomy and function. J Nucl Med. 2008;49:938–55.
37. Yang C-T, Ghosh KK, Padmanabhan P, et al. PET-MR
and SPECT-MR multimodality probes: development
and challenges. Theranostics. 2018;8(22):6210–32.
38. Glaus V, Rossin R, Welch MJ, Bao G. In vivo evalua-
tion of
64
Cu-labeled magnetic nanoparticles as a dual-
modality PET/MR imaging agent. Bioconjug Chem.
2010;21(4):715.
39. Sun Y, Zeng X, Xiao Y, et al. Novel dual-function
near-infrared II uorescence and PET probe for tumor
delineation and image-guided surgery. Chem Sci.
2018;2018(9):2092–7.
40. McCready VR. Radioiodine – the success story of
nuclear medicine. Eur J Nucl Med Mol Imaging.
2017;44:179–82.
41. Di Martino S, Rainone A, Troise A, et al. Overview
of FDA-approved anticancer drugs used for targeted
therapy. WCRJ. 2015;2(3):e553.
42. Dash A, Knapp FFR Jr, Pillai MRA. Targeted radio-
nuclide therapy - an overview. Curr Radiopharm.
2013;6(3):1–29.
43. Fahey F, Zukotynski K, Capala J, Knight N. Targeted
radionuclide therapy: proceedings of a joint workshop
hosted by the national cancer institute and the society
of nuclear medicine and molecular imaging. J Nucl
Med. 2014;55:337–48.
44. Jadvar H. Targeted radionuclide therapy: an evo-
lution toward precision cancer treatment. AJR.
2017;209:277–88.
45. Larson SM, Krenning EP. A pragmatic perspective on
molecular targeted radionuclide therapy. J Nucl Med.
2005;46:1S–3S.
46. Sgouros G, Bodei L, McDevitt MR, Nedrow
JR. Radiopharmaceutical therapy in cancer: clini-
cal advances and challenges. Nat Rev/Drug Dis.
2020;19:589–608.
47. Vallabhajosula S. The chemistry of therapeutic
radiopharmaceuticals. In: Aktolun C, Goldsmith SJ,
editors. Nuclear medicine therapy: principles and
clinical applications. New York: Springer; 2013.
p. 2013.
48. Zukotynski K, Jadvar H, Capala J, Fahey F. Targeted
radionuclide therapy: practical applications and future
prospects. Biomark Cancer. 2016;8(S2):35.
49. Kelkar SS, Reineke TM. Theranostics: com-
bining imaging and therapy. Bioconjug Chem.
2011;22(10):1879–903.
50. Langbein T, Weber WA, Eiber M. Future of theranos-
tics: an outlook on precision oncology in nuclear
medicine. J Nucl Med. 2019;60:13S–9S.
51. Herrmann K, Larson SM, Weber WA. Theranostic
concepts: more than just a fashion trend—introduc-
tion and overview. J Nucl Med. 2017;58:1S–2S.
52. Herrmann K, Schwaiger M, Lewis JS, et al.
Radiotheranostics: a roadmap for future development.
Lancet Oncol. 2020;21:e146–56.
53. Marin JFG, Nunes RF, Coutinho AM, et al.
Theranostics in nuclear medicine: emerging and
re-emerging integrated imaging and therapies
in the era of precision oncology. Radiographics.
2020;40:1715–40.
54. Weber WA, Czernin J, Anderson CJ, et al. The future
of nuclear medicine, molecular imaging, and ther-
anostics. J Nucl Med. 2020;61(12):263S–72S.
55. Vahidfar N, Eppard E, Farzanehfar S, et al. An impres-
sive approach in nuclear medicine theranostics. PET
Clin. 2021;16:327–40.
56. van de Donk PP, Kist de Ruijter L, et al. Molecular
imaging biomarkers for immune checkpoint inhibitor
therapy. Theranostics. 2020;10:1708–18.
57. Kratochwil C, Bruchertseifer F, Giesel FL, et al.
225Ac-PSMA-617 for PSMA-targeted alpha radia-
tion therapy of metastatic castration-resistant prostate
cancer. J Nucl Med. 2016;57:1941–44.
References