Moment Resisting Frame.pdf

8,526 views 62 slides Dec 15, 2022
Slide 1
Slide 1 of 62
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62

About This Presentation

A full explanation for the lateral resisting system: CONCRETE MOMENT RESISTING FRAME-STEEL MOMENT RESISTING FRAME- COMPOSITE MOMENT RESISTING FRAME


Slide Content

LATERAL RESISTING STRUCTURAL
SYSTEM:
MOMENT RESISTING FRAME
1
Presented By
Eng. ZEINAB AWADA
Email
[email protected]
MASTER OF CIVIL ENGINEERING -LEBANON
ADVANCED STRUCTURAL SYSTEMS COURSE
Mon, Nov 29-2021

OUTLINE
2
❑INTRODUCTION
❑CONCRETEMOMENTRESISTINGFRAME
❑STEELMOMENTRESISTINGFRAME
❑COMPOSITEMOMENTRESISTINGFRAME

3
•Theseismicanalysisanddesignhastraditionallyfocusedonreducing
theriskoflossoflife.
•Buildingcodeshavedevelopedprovisionsaroundlifesafetyconcerns,
i.e.,topreventcollapseunderthemostintenseearthquakeexpectedat
asiteduringitslife.
•Thesuccessfulperformanceofbuildingsinareasofhighseismicity
dependsonacombinationofstrength,ductilitymanifestedinthe
detailsofconstruction,andthepresenceofafullyinterconnected,
balanced,andcompletelateral-force-resistingsystem.
•Verybrittlelateral-force-resistingsystemscanbeexcellentperformers
aslongastheyareneverpushedbeyondtheirelasticstrength.
INTRODUCTION
❖General Requirements

❖What is a Moment Resisting Frame!
INTRODUCTION
•Usedinsteelandreinforcedconcretebuildings
•Thissystemconsistsofbeams,columnsandrigidjoints
•Capableofresistingbothverticalandlateralloadsbythebending
ofbeamsandcolumns
•Beam-columnconnectionshaveadequaterigiditytoholdthe
originalanglesbetweenintersectingmembersunchanged
•Reinforcedconcreteisanidealmaterialforthissystembyvirtueof
itsnaturallymonolithicbehavior
•Forsteelbuildings,rigidframingisachievedbyreinforcingbeam-
columnconnections
4

5
❖Disadvantages of Moment Resisting Frame!
1.Greaterdeflectionanddriftcomparedtothatofbracedframesorshearwalls
2.localizedstressconcentrationsatrigidjoints
3.Requirescareintheerectionofconnectionsinordertoresistlateralloads
properly
4.Expensivemomentconnections
5.Ahighlyrigidityintheupperfloors,wherethereisalittledeformationmorethan
thelowerfloors
1.Providesflexibilityforarchitecturaldesignandlayout
2.Sufficientstiffnesstoresistwindandearthquakeinducedlateralloadsinbuildings
ofuptoabout25stories
❖Advantages of Moment Resisting Frame!
CHARACTERISTICS OF MRF

6
CONCRETE MOMENT FRAME
DESIGN REQUIREMENTS AND ASSUMPTIONS
PART 1

7
❖Types of Moment Resisting Frame!
•Anordinaryreinforcedconcretemomentispermitted
tobeusedinbuildingsassignedtoSDCB
•StructuresassignedtoSDCCarepermittedtoutilize
intermediateconcretemomentresistingframes
•Specialreinforcedconcretemomentframesare
requiredinstructuresassignedtoSDCD,EandF
ACI318-19CHAPTER18
✓Ordinarymomentframesshallsatisfy18.3
✓Intermediatemomentframesshallsatisfy
18.4
✓specialmomentframesshallsatisfy18.2.3
through18.2.8and18.6through18.8
1.Ordinarymomentframes
2.Intermediatemomentframes
3.specialmomentframes
CHARACTERISTICS OF MRF

8
Therearetwocausesoflateraldrift:
1.Duetocantileverbendingofthebuilding
(bendingdeformation),whichis
approximately20percentofthetotallateral
drift
2.Duetobendingofthebeamsandcolumns
(sheardeformation),approximately65per
centisduetothebendingofthebeams,and
15percenttothecolumns,totaling
approximately80percentofthetotallateral
drift
❖Drifts in Moment Resisting Frame
CHARACTERISTICS OF MRF

9
•Capacityofbuildingmaterials,systems,or
structurestoabsorbenergybydeformingintothe
inelasticrange
•Thecapabilityofastructuretoabsorbenergy,with
acceptabledeformationsandwithoutfailure,isa
verydesirablecharacteristicinanyearthquake-
resistantdesign
•Concrete,abrittlematerial,mustbeproperly
reinforcedwithsteeltoprovidetheductility
necessarytoresistseismicforces
CHARACTERISTICS OF MRF
❖Definition of Ductility

10
•dissipateenergythroughtheirductilityandmay
undergoexcessivelateraldeformations.
•ductilityisachievedbytheformationofplastichingesin
thecolumnsandbeams.
•whentheyaredeformedbeyondtheirelasticlimits,a
largepartoftheenergyisdissipatedbytheplastic
hinges.
•ductilityofreinforcedconcretedependsonthedesign.
•Inreinforcedconcreterigidframes,itisnecessaryto
designthecolumnstobestrongerthanthebeamsso
thatplastichingescanbeformedinthebeams.
CHARACTERISTICS OF MRF
❖Ductility in Rigid Frames

11
•Theformationofplastichingesatthebeam-columninterface
resultsinlargeinelasticstraindemandsattheconnectionleading
tobrittlefailure.
•theprequalifiedconnectionsaredesignedtoproducetheplastic
hingeswithinthebeamspan.
•theformationofplastichingeswithinthebeamspaniscapableof
dissipatinglargeamountsofenergy,withoutfailure.
•Thisconditionmaybeachievedbyreducingthesectionofthe
beamatthedesiredlocationoftheplastichingeorbyreinforcing
thebeamattheconnectiontopreventtheformationofahingein
thisregion.
❖Strong Column–weak Beam
CHARACTERISTICS OF MRF

12
•frameswithcolumnsthatareweakerinflexurethanthe
framingbeamscanformweak-storymechanisms,inwhich
plastichingesformatthebaseandtopofallcolumnsina
story.
•largeinelasticdisplacementsproducedinthecolumnsincrease
theP-deltaeffectandmayleadtocolumnfailure.
•Thestrongcolumn–weakbeamconceptmaybeachievedin
accordancewiththerequirement:
1.Byassuringthat,ateachbeam–columnjoint,theflexural
resistanceofcolumnsissubstantially(20%)morethan
theflexuralstrengthofbeams.
❖Strong Column–Weak Beam
CHARACTERISTICS OF MRF

13
•Whenaxialloadisimposedonthedeflectedshapeofthe
frame,additionalswayoccursintheframe.
•Thisadditionaldeflectionimposessecondarymomentsin
thecolumn.
•Atanypoint,thetotalmomentMcanbeconsideredasa
combinationofthemomentM0duetoendmomentsplus
theadditionofthemomentcausedbyPactingatan
eccentricityy.
•Thus,M=M0+P∆
❖P∆-Effect
CHARACTERISTICS OF MRF

14
•ThefactorRinthedenominatorofbaseshearequationsisanempiricalresponsereductionfactor
intendedtoaccountforboththedampingandductility.
•AhighervalueofRhastheeffectofreducingthedesignbaseshear.
•forRCspecialmoment-resistingframe,thefactorhasavalueof8,whereasforordinarymoment-resisting
frame,thevalueis3.
❖Structural System Coefficient R
CHARACTERISTICS OF MRF
•Thisreflectsthefactthataspecial
moment-resistingframeperformsbetter
duringanearthquake.

15
ORDINARY CONCRETE MOMENT FRAMES (OMF) SDC B
❖General Requirements: Frame Beams
•Theflexuralreinforcementatbothtopandbottom
facesofthesectionmustincludeatleasttwo
continuousbarsalongthespan.
•TheareaoftheContinuousbottombarsinthe
section,shallhaveanareanotlessthan25%ofthe
maximumareaofbottombarsalongthespan.
•Thesebars(flexuralRFT.)shallbeanchoredtodevelop
fyintensionatthefaceofsupport.
•Theserequirementsforstructuresnotexpectedtobe
subjectedtostronggroundmotion.

16
•flexuralreinforcement:
1.similartoordinarymomentbeams.
2.Thelimitsofgrossreinforcementratio:
•Shearreinforcement:
a.minimumtiesarerequiredintherectangularsections:
1.Minimumdiameteroftiesis10mm(#3).
2.Maximumspacingoftiesisgivenas:
✓b=Dimensionoftheshortersideofthemember.
✓db=Diameterofthemainreinforcementbars.
✓dt=Diameterofthetiebars.
ORDINARY CONCRETE MOMENT FRAMES (OMF) SDC B
❖General Requirements: Frame Columns
•Thespacingofspirals:
1.smax=80mm(3in)
2.smin=25mm(1in)
Ratio of the volume of spirals to the
volume of concrete

17
❖Flexural Reinforcement: Frame Beams
•Positivemomentstrengthatjointface≥one-
thirdnegativemomentstrengthprovidedat
thatfaceofthejoint.
•Neitherthenegativenorthepositive
momentstrengthatanysectionalongthe
memberlengthshallbelessthanone-fifth
themaximummomentstrengthprovidedat
thefaceofeitherjoint.
•Thetopreinforcementisusuallysplicednear
midspanandthebottomreinforcementis
splicednearthesupport.
INTERMEDIATE CONCRETE MOMENT FRAMES (IMRF) SDC C

18
❖Transverse Reinforcement: Frame Beams
•Thefirststirrupshallbelocatednomorethan2inor
50mm,fromthefaceofthesupportingmember.
•Maximumstirrupspacingshallnotexceed
•d/4.
•8×diameterofsmallestlongitudinalbar
•24×diameterofstirrupbar
•12in.or300mm
•Stirrupsshallbespacedatnomorethand/2
throughoutthelengthofthemember
INTERMEDIATE CONCRETE MOMENT FRAMES (IMRF) SDC C
•Thepotentialplastichingeregionisassumedtoextendadistance(2h)fromthefaceofthesupport.
•Stirrupsshallbeprovidedatbothendsofamemberoveralengthequalto2hfromthefaceofthesupporting
membertowardmid-span.

19
❖Transverse Reinforcement: Frame columns
•L0isassumedlengthoftheanticipatedplastichingeregion
•ThelengthL0shallnotbelessthanthelargestof
•Clearspan/6.
•Maximumcross-sectionaldimensionofmember.
•18in.
•MaximumtiespacingshallnotexceedS0overalengthL0
measuredfromeachjointface.
•SpacingS0shallnotexceedthesmallestof:
INTERMEDIATE CONCRETE MOMENT FRAMES (IMRF) SDC C
•ThefirsttieshallbelocatednofartherthanS0/2fromthejointface.
•TiespacingoutsideofthelengthLoshallnotexceed2S0.

20
❖General Requirements: JOINT
INTERMEDIATE CONCRETE MOMENT FRAMES (IMRF) SDC C
•Beamlongitudinalreinforcementmustextendtothe
farofthejointcoreandmustbedevelopedin
tension.

21
❖Dimension limit: Frame Beams
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
•Thewebwidthshallnotbelessthan0.3
timesitsheightand250mm,
•Thewebwidthshallbegreaterthan3C2and
C2+1.5C1
•Projectionofthebeamwidthbeyondthe
widthofthesupportingcolumnoneachside
shallnotexceedthelesserofc2and0.75c1.
•Theclearspanofthebeamshallnotbeless
thanfourtimesitseffectivedepth.

22
❖Flexural Reinforcement: Frame Beams
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
•Thepositivemomentatthefaceofthe
columnmustexceedonehalfthenegative
momentstrengthprovidedatthefaceofthe
supportingcolumn.
•Theminimumpositiveandnegative
momentsatmid-spanmustexceedone
fourththemaximummomentstrength
providedatthefaceofthesupporting
column.
•Atleasttwobarsatthetopandbottom
facesofthebeammustbecontinuous.

23
❖Flexural Reinforcement: Frame Beams
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
•Therequireddevelopmentlengthforstraightbarsare
multiplesofthehookedbardevelopmentlengthsinACI
18.8.5.1:
•Minimumdevelopmentlength2.5Ldhforbottombars
•Minimumdevelopmentlength3.25Ldhfortopbars

24
❖Flexural Reinforcement: Frame Beams
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
•Therequirementsforlapsplicesinbeamsof
specialmomentframesaregiveninACI
18.6.3.3:
1.Hooporspiralreinforcementspacedon
centernomorethanthelesserofd/4
and4in.Mustbeprovidedoverthelap
splicelength.
2.Thesplicelocationshallnotbelessthan
2hfromthefaceofthesupportorfrom
thecriticalsectionofanyplastichinge.
3.Lapsplicesmustnotbelocatedwithin
joints

25
❖Transversal Reinforcement: Frame Beams
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
•Thecalculatedhoopspacing,s,within2hmustbe
lessthanorequaltothesmallestofthefollowing:
•Thecentertocenterspacingofthetransversely
supportedlongitudinalbarsinbeamsmustbeless
thanorequalto14in

26
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
❖Dimension Limit: Frame Columns
•Shortestcross-sectionaldimension
measuredonastraightlinepassingthrough
thegeometriccentroid≥12in.
•Ratiooftheshortestcross-sectional
dimensiontotheperpendiculardimension
≥0.4.

27
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
•Thesplicelocationshallbelimitedtothecenterhalfof
thebeamcolumntokeepthespliceoutsideofthe
regionsoftheplastichinges.
•theclearheightofthecolumnisgreaterthanorequal
to2.5timesthetensiondevelopmentlengthofthe
bars.
•Atleastsixlongitudinalbarsarerequiredincolumns
•Thepotentialplastichingeregionisassumedtobe
withinadistance(Lo)fromthefaceofthesupport.
•Theminimumlengthofplastichingeregion(Lo)is
givenasafunctionoftheclearspanofthecolumn,the
dimensionsofthesectionand500mm(18in).
❖Flexural Reinforcement: Frame Columns

28
•Theamountandspacingofhoopsintheplastichingeregion
mustextendthroughthejointasshowninfigure.
•Thespacingofhoopsinthemiddleofthebeamshallneither
exceed6dbnor150mm(6in)and5db.
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
❖Transversal Reinforcement: Frame Columns

29
STEEL MOMENT FRAME DESIGN REQUIREMENTS
AND ASSUMPTIONS
PART 2

30
•steelmomentframeshavebeeninuseformorethanonehundredyears.
•Itwasbelievedthat:
1.Weldedsteelmoment-framebuildingsasbeingamongthemost
ductilesystemscontainedinthebuildingcode.
2.Thesteelmoment-framebuildingswereessentiallyinvulnerableto
earthquake-inducedstructuraldamageandthoughtthatshouldsuch
damageoccur,itwouldbelimitedtoductileyieldingofmembers
andconnections.
3.thetypicalconnectionemployedinsteelmoment-frame
construction,wascapableofdevelopinglargeplasticrotations,
withoutsignificantstrengthdegradation.
•Followingthe1994Northridgeearthquake,engineersweresurprisedto
discoverthatmorethan20modernspecialsteelmomentframestructures
hadexperiencedbrittlefracturingoftheirweldedbeam-to-column
connections.
HISTORY OF SPECIAL MOMENT FRAME DEVELOPMENT
❖History Of Steel Moment Frame

31
•Manydifferenttypesoffractureswerealso
discovered,themajorityinitiatingwherethe
bottombeamflangejoinedthecolumnflange.
•TheSACresearch,conductedatacostof$12
millionovereightyears,resultedinthebasisfor
thecurrentdesignprovisionsformomentframes
containedinAISC341,AISC358,andAWSD1.8.
HISTORY OF SPECIAL MOMENT FRAME DEVELOPMENT
❖History Of Steel Moment Frame

32
•Typically,butnotalways,fractures
initiatedatthecompletejointpenetration
(CJP)weldbetweenthebeambottom
flangeandcolumnflange(Figure1-2).
•Onceinitiated,thesefracturesprogressed
alonganumberofdifferentpaths,
dependingontheindividualjoint
conditions.
HISTORY OF SPECIAL MOMENT FRAME DEVELOPMENT
❖History Of Steel Moment Frame

33
STEEL MOMENT FRAMES LIMITATIONS
1.ORDINARYMOMENTFRAMES
•AISC341§E1
•light,single-storystructuresandlow-riseresidentialstructuresinallSDC
•permittedwithoutrestrictioninSDC-A,B,andC
2.INTERMEDIATEMOMENTFRAMES
•AISC341§E2
•permittedwithoutrestrictioninSDC-A,B,andC
•InSDC-D,arepermittedforstructuresupto35feet(11m)inheight
•InSDC-EandF,arepermittedforlight,single-storystructuresonly
3.STEELSPECIALMOMENTFRAMES
•AISC341§E3
•arepermittedwithoutrestrictioninallSDC
Recommendations
•arerequiredaspartoftheseismicforce-resistingsysteminSDC-D,E,andFformoststructuresexceeding
160feet(49m)inheight
❖SteelMoment Frames Types Limitations

34
•Impracticaltodesignstructurestoresistsuchseverebutrareearthquakes
withoutdamage.
•Thebuildingcodeshaveadoptedadesignphilosophyintendedtoprovide
safetybyminimizingtheriskofcollapse.
•Inelasticbehaviorisintendedtobeaccommodatedthroughtheformationofplastichingesinbeamsat
beam-columnjoints,aswellasatcolumnbases.
•Plastichinginginbeamsandcolumnscanbeaccompaniedbylocalbucklingofbeamandcolumnflangesor
webs.
•Inrecognitionofthehighlyductileinelasticbehaviorofpanelzonesandtheabilityofthisbehaviorto
minimizethedamagetobeams,AISC341encouragesdesigntoaccommodatebalancedyieldingbetween
plastichingezonesinbeamsandthepanelzones.
STEEL MOMENT FRAME SEISMIC BEHAVIOR
0. Introduction

35
•Whenbucklingbecomesexcessive,strengthlossandultimatelyfractures
associatedwithlow-cyclefatiguewilloccur.
•Theuseofhighlycompactsectionsformembersintendedtoexperience
hinging,minimizesthepotentialforstrengthlossandfracturingatdeformation
levelslikelytooccurinresponsetoMCERshaking.
STEEL MOMENT FRAME SEISMIC BEHAVIOR
1. Beam behavior
•Provisionoflateralbracinginzonesof
anticipatedplastichingingisrequiredto
avoidlateraltorsionalbucklingandthe
strengthlossassociatedwiththatbehavior
mode.

36
•Transfertheyield-levelstressesandstrainsthatdevelopinthebeamtothecolumn.
•Failuremodes:
1.Fracturesinoraroundwelds
2.Fracturesinhighlystrainedbasematerial
3.Fracturesatweldaccessholes
4.Netsectionfracturesatboltholes
5.Shearingandtensilefailuresofbolts
6.Boltbearingandblockshearfailures
•AISC341requiresdemonstrationbyconformancewithprequalifieddetailsorthroughprototypetesting:
1.atleast+/-0.04radiansoftotalrotation
2.NostrengthlossassociatedwiththeseORotherfailuremodeswhensubjectedtoaspecified
loadingconsistingofrepeatedcyclesofincreasingdisplacement.
STEEL MOMENT FRAME SEISMIC BEHAVIOR
2. Beam-to-column Connections

37
•Consistofthatportionofthecolumnboundedbythe
topandbottombeamflanges,resistssignificant
shear,tension,andcompressionforcesfromthe
beamsframingintothecolumn.
•Potentialfailuremodesincludewebcompressive
buckling,webshearbuckling,and,ifdoublerplates
areusedtoreinforcethepanelzone,fractureat
welds.
•AISC341designprocedurescontrolthesebehaviors
throughrequirementsforminimumshearstrength,
provisionofstiffenerplatesoppositebeamflanges,
andcontrolofweldingdetails.
STEEL MOMENT FRAME SEISMIC BEHAVIOR
3. Joint Panel Zones

38
•Doublerplateisneededtolocallystrengthenthecolumnweb.
•Addingdoublerplatesisexpensivebecauseofthesignificantshop
fabricationtimethatisneededtopreparetheplateandweldit
intothecolumnweb.
•Aruleofthumbthatcommonlyappliesformosttypicalmoment
frameconfigurations,storyheightsofapproximately5m,and
beamspansofapproximately10m,isasfollows:
•ifthedesignercanincreasetheweightperfootofthecolumnby
lessthan150kg/mandavoidtheneedfordoublerplates,thecost
oftheframewillbereduced
STEEL MOMENT FRAME SEISMIC BEHAVIOR
4. Doublerplate

39
•Exceptatrestrainedcolumnbases,whereplastichingingislikelyto
occur,columnsaredesignedtobehaveinanessentiallyelastic
manner.
•Thisisaccomplishedthroughrequirementsthatcolumnsbestronger
inflexurethanbeamsconnectedtothecolumnsatthesamejoint.
•Columnscanexperiencesignificantinelasticrotationsinresponseto
severeshaking,resultinginexcessivelocalbucklingandlateral-
torsionalbuckling.
•Tominimizethispotential,columnsmusthaveadequateaxial
strength,compactness,andlateralbracingtowithstandtheaxial
forcesassociatedwithformationoffullframeyieldmechanisms.
STEEL MOMENT FRAME SEISMIC BEHAVIOR
5. Columns

40
•Inmultistoreybuildings,itisveryconvenienttosplicethecolumn
justabovethefloor.
•Multi-Storeystructuresgenerallyrequirethatthecolumnsbe
‘spliced’inordertoextendtheirlengthforthefullheightofthe
structure.
•Splicesmaybeeitherboltedorwelded
•Potentialfailuremodesatcolumnsplicesaresimilartothose
enumeratedforbeam-tocolumnconnections.
•theexpectedflexuralstrengthofthesmallercolumncross
sectionbedevelopedatcolumnsplices,eitherthroughtheuse
ofcompletejointpenetrationgrooveweldsorthroughother
meansthatcanprovidesimilarstrength.
STEEL MOMENT FRAME SEISMIC BEHAVIOR
6. Column Splices

41
•Manysteelspecialmomentframeconnectionsincludeagrooveweld
betweenthebeamflangesandthecolumnflange.
•thisjointismadewithasinglebevelweldthatisdetailedwithweld
backingacrossthewidthoftheflange,withtheweldbeingmadein
theflatposition.
•Thebackingistypicallyasteelbar,1inchwideby3/8inchthick(10
mm).
•Toaccommodatethisbackingandtoprovideaccessforthewelderto
maketheweldatthebottomflange,aweldaccessholeisprovided.
•WeldsmaybeclassifiedaseitherCompleteJointPenetration(CJP)or
PartialJointPenetration(PJP).
•CJPweldsextendcompletelythroughthethicknessofcomponents
joined.
•ACJPweldtransmitsthefullload-carryingcapacityofthestructural
componentsjoined,andisimportantforseismicsafety.
STEEL MOMENT FRAME SEISMIC BEHAVIOR
8. Weld Access Holes

42
•Theydonothavestructuralwallsordiagonalbraces.
•Imposesmallerforcesonfoundationsthandootherstructuralsystems.
•Providearchitecturalfreedomindesign,permittingopenbaysand
unobstructedviewlines.
FEATURES OF STEEL MOMENT FRAME
1. Advantages
2. Disadvantages
•canbemorecostlytoconstructthanbracedframeorshearwallstructures.
•Theaddedcostresultsfromtheuseoflargersectionsinmomentframes
thaniscommoninbracedstructuresandmorelabor-intensiveconnections.
•drift-sensitivenonstructuralcomponents,suchascladdingandglazing,can
experiencemoredamageinthesestructurescomparedwithother
structuraltypes

43
•ThereducedseismicforcesdecreasesprogressivelyfromOMRFtoIMRFto
SMRF.
•Theaddedlevelofdetailingrequiredforthebetter-performingsystemscan
significantlyincreaseconstructioncost.
•lateraldriftoftencontroltheselectionofmomentframemembersizes
•Thereducedrequiredstrengthassociatedwiththemoreductilesystemsdo
notnecessarilytranslatetosavingsinmembersizesorframeweight.
•FortallbuildingsinSDC-D,E,andF,usedualsystems,inwhichsteelspecial
momentframescapableofprovidingatleast25%oftherequiredlateral
strengthareusedincombinationwithshearwallsorbracedframes.
•Thedualsystemallowseconomicalcontroloflateraldrift
SteelMoment Frames Features
FEATURES OF STEEL MOMENT FRAME

44
FRAME PROPORTIONING
•factorsaffectingsteelSMRFmembersize:
1.needtocontroldesigndriftsbelowspecifiedlimits
2.needtoavoidP-Dinstabilities
3.needtoproportionstructurestocomplywiththestrong-column/weak-beamcriteriaofAISC341§E3.4a
•Useofdeepsectioncolumns(ex:W24s,W36s,andbuilt-upboxsections)
1.economicalchoice
2.achievementofdriftcontrol
3.achievementstrongcolumn/weak-beamrequirements
•deepwideflangesections,particularlythosewithlighterweights
1.susceptibletoundesirablelocalandlateral-torsionalbuckling.
•Theperformanceofdeepcolumnsectionsisthesubjectofongoingresearch.
SteelMoment Frame Proportioning

45
3.5 Connection Type Selection
•Prequalifiedconnectionshavebeendemonstratedtobeacceptable.
•connectionprequalificationscontainedinthestandardareacceptabletomost
buildingofficials.AISC341
•Eachprequalifiedconnectionhasuniquelimitsofapplicabilityassociatedwith
membertype,depth,andweight.
•noteveryconnectioncanbeusedinthesameapplications.
•Sometypesofconnection:
1.Thereducedbeamsection
2.endplateconnection
3.weldedunreinforcedflange-weldedweb,
4.anddouble-teeconnections.
AISC Prequalified Connections

46
AISC Prequalified Connections

47
COMPOSITE MOMENT FRAME
DESIGN REQUIREMENTS AND ASSUMPTIONS
PART 3

48
•C-SMFsusuallyconsistofCFTcolumns,wideflangesteelbeams,andrigid
beam-to-columnconnections.
•C-SMFshavebeenwidelyusedaroundtheworld,forexample,in
1.TwoUnionSquareinSeattle,USA;
2.ShimizuSuperHighRiseinTokyo,Japan
•C-SMFshaveexcellentearthquakeresistance
•AISC360-16(2016c)providesdesignprovisionsforCFTmembers,including
•steeltubeslendernesslimits(i.e.,limitsonthesteeltubewidth-to-
thicknessratio)tocategorizeCFTmembersintocompact,noncompact,
andslender.
•designequationsforestimatingthestrengthofCFTmembersas
columns,beams,andbeam-columns.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
❖Wide Flange Beam To Concrete-filled Steel Column Connections

49
•Rigidbeam-to-columnmomentconnectionsshouldbedesignedtoresisttheforces
transferredfromtheconnectedmemberswithnegligiblerotation.
•Theseforcesproduceshearinthepanelzone,whichisresistedbyelementswithinthe
panelzone(e.g.,concreteinfill,steeltubewebs,andsteelbeamweb).
•Iftheconnectionisunabletoresistsuchshear,panelzonefailurewilloccurbecauseof
excessivesheardeformations.
•Typicalpanelzoneshearfailuremodesofcompositebeam-to-columnconnections
include
1.shearbucklingofthesteeltubewebs
2.shearyieldingofthebeamwebandsteeltubewebs
3.localizedbearingfailureintheconcrete(Koester2000)
4.diagonalshearcracksintheconcrete(Riclesetal.,2004).
•Thefailuremodesdependontheconnectiontype.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
❖Wide Flange Beam To Concrete-filled Steel Column Connections

50
•AISC341-16(2016b)hasthefollowingrequirementsfor
beam-to-columnconnectionsinC-SMFs:
1.Fullyrestrained(i.e.,rigid)
2.Capableofaccommodatingastorydriftangleofat
least0.04rad
3.Measuredflexuralresistanceoftheconnection,
determinedatthecolumnface,shallequalatleastto
0.80Mpatastorydriftangleof0.04rad,whereMpis
thenominalplasticflexuralstrengthoftheconnected
beam.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
❖Wide Flange Beam To Concrete-filled Steel Column Connections

51
•itconsistsofCFTcolumns,wideflangebeams,taperedT-stubs,andhigh-
strengththroughbolts.
•TheT-stubflangewasattachedtothecolumnflangeusingpre-tensioned
highstrengththroughbolts,andtheT-stubstemwasboltedorfilletwelded
tothebeamflange.
•theshearresistanceofDSTconnectionsismainlyprovidedbythesteeltube
websandtheconcretecompressionstrutinthepanelzone.
•ShearistransferredfromthebeamtoCFTcolumnthroughasheartab
connectionweldedtotheCFTcolumnsteelandboltedorweldedtothe
wide-flangedbeamweb.
❖Double Split-tee Connections DstConnection
COMPOSITE SPECIAL MOMENT RESISTING FRAME

52
•TwotypesofDSTconnectionsweretested
byRiclesetal.(2004).
1.T-stubstemconnectedtobeam
flangeusinghighstrengthbolts
2.T-stubstemweldedtothebeam
flange.
•Thetestresultsindicatedthatbothtypes
ofconnectioncouldaccommodatestory
driftanglesgreaterthan0.04radwithout
noticeablestrengthdegradation.
•Therefore,theseconnectionssatisfythe
AISC341-16(2016b)requirements.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
❖Double Split-tee Connections DstConnection

53
•ThegoverninglimitstatesofDSTconnectionsarelistedasfollows,frommostductile
(desirable)toleastductile:
1.plastichingeformationinbeam,
2.grossyieldingoftheT-stem,
3.netsectionfractureoftheT-stem,
4.compressionoftheT-stemcausedbyflexuralbuckling
5.weldfracturebetweentheT-stemandthebeamflanges,
6.pryingoftheT-stubflanges,
7.boltfractureowingtothepryingactionoftheT-stubflange,
8.panelzoneshearfailure.
•Itshouldbedesignedanddetailedsothatplastichingingoccursinthebeampriorto
anyoftheotherlimitstates.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
❖Double Split-tee Connections DstConnection

54
•Thepanelzoneshearstrength(Vn)ofDSTconnectionsforrectangularCFTcolumnsis
contributedfromtwoparts
1.theshearstrengthofsteeltubewallsinthepanelzone(Vtw)
2.theconcretecompressionstrut(Vcs).
•ThedesignequationsproposedbyKoester(2000)wereusedtocalculatethepanelzone
shearzonestrengthasfollows:
COMPOSITE SPECIAL MOMENT RESISTING FRAME
❖Double Split-tee Connections DstConnection

55
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
ThisexamplepresentsthedesignofaDSTconnectionasaninteriorjointinaC-SMF.
oThewideflangebeamsareASTMA992(2015)wideflangesections(W24×76,Fy=345MPa,Fu=448
MPa,Ry=1.1).
oThebeamdepth(h)is607mm,flangewidth(bf)is228mm,flangethickness(tbf)is17.3mm,andweb
thickness(tbw)is11.2mm.
oTheCFTcolumnsHollowSteelSection(HSS)406.4×406.4×19.1madefromASTMA500(2018)GradeB
steel(Fy=317MPa,Fu=448MPa)andfilledwithnormal-weight,55.2MPaconcrete(f′c).
oA490boltswiththediameter(dbt)of25.4mmareused.
oThedistributeddeadandliveloadsconsideredonthebeamsare12.3kN/mand8.8kN/m,respectively.
oThebeamandcolumnlengthareLb=9,144mmandLc=3,810mm,respectively.
COMPOSITE SPECIAL MOMENT RESISTING FRAME

56
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
COMPOSITE SPECIAL MOMENT RESISTING FRAME

57
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
A14-stepdesignprocedureisproposedasfollows:
•Step1:Calculatetheflexuralandsheardemandsfortheconnectionatthefaceofthe
column,andthenusetheflexuraldemandtocalculatethebeamflangeforcesinthe
DSTconnection.Thesedemandsshouldincludeamaterialoverstrengthfactor,Ry,and
afactortoaccountforpeakconnectionstrength,includingstrainhardening,local
restraint,additionalreinforcement,andotherconnectionconditions,Cpr.
•Step2:Determinethelengthandsizeofweldsrequiredtoresistthebeam
•flangeforcesintheconnection.
•Step3:EstimatetheflangeforceintheT-stubcausedbytheexpectedmomentatthe
faceofthecolumn.
COMPOSITE SPECIAL MOMENT RESISTING FRAME

58
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
•Step4:SizetheT-stembasedonlimitstatesofgrosssectionyielding,netsection
fracture,andcompressioncausedbyflexuralbuckling.
•Step5:DeterminethesizeoftheboltsconnectingtheT-stubflangestothecolumn.
•Step6:DetermineaninitialconfigurationoftheT-flange,includingthelayoutofthe
bolts,widthoftheT-stubflanges,andflangethicknesstominimizeoreliminateprying
action.
•Step7:SelectaW-shapeorfinalsizesofbuilt-upplatesfordimensionsoftheT-stub.
•Step8:Checktheconnectionrotationalstiffnesstoensurethattheconnectionis
classifiedasfullyrestrained.
•Step9:ComputethemaximumforceintheT-stubusingactualT-stubdimensionschosen
inStep7.
COMPOSITE SPECIAL MOMENT RESISTING FRAME

59
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
•Step10:Back-checkthestrengthoftheweldwiththeactualflangeforcetoensure
theweldhasadequatestrengthtoresisttheactualflangeforce.
•Step11:Back-checkthestrengthoftheT-stemusingthemaximumbeamflange
forcecalculatedinStep9.Thisincludesgrosssectionyielding,netsectionfracture,
andflexuralbucklingstrengthsoftheT-stem.
•Step12:Back-checktheflangestrengthoftheT-stubusingthemaximumbeam
flangeforcecalculatedinStep9.
•Step13:Determinetheconfigurationoftheshearconnectiontotheweb
consideringeccentricloadingonthebolts.
•Step14:CheckpanelzonestrengthusingEquation(3-1).
COMPOSITE SPECIAL MOMENT RESISTING FRAME

60
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
•Step10:Back-checkthestrengthoftheweldwiththeactualflangeforcetoensure
theweldhasadequatestrengthtoresisttheactualflangeforce.
•Step11:Back-checkthestrengthoftheT-stemusingthemaximumbeamflange
forcecalculatedinStep9.Thisincludesgrosssectionyielding,netsectionfracture,
andflexuralbucklingstrengthsoftheT-stem.
•Step12:Back-checktheflangestrengthoftheT-stubusingthemaximumbeam
flangeforcecalculatedinStep9.
•Step13:Determinetheconfigurationoftheshearconnectiontotheweb
consideringeccentricloadingonthebolts.
•Step14:CheckpanelzonestrengthusingEquation(3-1).
COMPOSITE SPECIAL MOMENT RESISTING FRAME

61
THANK YOU
Contact meforanyhelp
[email protected]

62
REFERENCES
✓DesignanddetailingofreinforcedconcretebuildingsbasedonACI
✓Earthquakeengineeringtheoryandimplementation
✓Windandearthquakeresistantbuilding-structuralanalysisanddesign
✓Seismicdesignofsteelspecialmomentframesaguideforpracticingengineers
✓CompositeSpecialMomentFrameswideflangebeamtoconcrete-filledsteelcolumnconnections
✓RecommendedSeismicDesignCriteriaforNewSteelMoment-FrameBuildings
✓AISCLiveWebinarSeriesJuly16,2018
✓AISCPrequalifiedConnectionsforSpecialandIntermediateSteelMomentFramesforSeismic
Applications