❖What is a Moment Resisting Frame!
INTRODUCTION
•Usedinsteelandreinforcedconcretebuildings
•Thissystemconsistsofbeams,columnsandrigidjoints
•Capableofresistingbothverticalandlateralloadsbythebending
ofbeamsandcolumns
•Beam-columnconnectionshaveadequaterigiditytoholdthe
originalanglesbetweenintersectingmembersunchanged
•Reinforcedconcreteisanidealmaterialforthissystembyvirtueof
itsnaturallymonolithicbehavior
•Forsteelbuildings,rigidframingisachievedbyreinforcingbeam-
columnconnections
4
5
❖Disadvantages of Moment Resisting Frame!
1.Greaterdeflectionanddriftcomparedtothatofbracedframesorshearwalls
2.localizedstressconcentrationsatrigidjoints
3.Requirescareintheerectionofconnectionsinordertoresistlateralloads
properly
4.Expensivemomentconnections
5.Ahighlyrigidityintheupperfloors,wherethereisalittledeformationmorethan
thelowerfloors
1.Providesflexibilityforarchitecturaldesignandlayout
2.Sufficientstiffnesstoresistwindandearthquakeinducedlateralloadsinbuildings
ofuptoabout25stories
❖Advantages of Moment Resisting Frame!
CHARACTERISTICS OF MRF
6
CONCRETE MOMENT FRAME
DESIGN REQUIREMENTS AND ASSUMPTIONS
PART 1
7
❖Types of Moment Resisting Frame!
•Anordinaryreinforcedconcretemomentispermitted
tobeusedinbuildingsassignedtoSDCB
•StructuresassignedtoSDCCarepermittedtoutilize
intermediateconcretemomentresistingframes
•Specialreinforcedconcretemomentframesare
requiredinstructuresassignedtoSDCD,EandF
ACI318-19CHAPTER18
✓Ordinarymomentframesshallsatisfy18.3
✓Intermediatemomentframesshallsatisfy
18.4
✓specialmomentframesshallsatisfy18.2.3
through18.2.8and18.6through18.8
1.Ordinarymomentframes
2.Intermediatemomentframes
3.specialmomentframes
CHARACTERISTICS OF MRF
8
Therearetwocausesoflateraldrift:
1.Duetocantileverbendingofthebuilding
(bendingdeformation),whichis
approximately20percentofthetotallateral
drift
2.Duetobendingofthebeamsandcolumns
(sheardeformation),approximately65per
centisduetothebendingofthebeams,and
15percenttothecolumns,totaling
approximately80percentofthetotallateral
drift
❖Drifts in Moment Resisting Frame
CHARACTERISTICS OF MRF
9
•Capacityofbuildingmaterials,systems,or
structurestoabsorbenergybydeformingintothe
inelasticrange
•Thecapabilityofastructuretoabsorbenergy,with
acceptabledeformationsandwithoutfailure,isa
verydesirablecharacteristicinanyearthquake-
resistantdesign
•Concrete,abrittlematerial,mustbeproperly
reinforcedwithsteeltoprovidetheductility
necessarytoresistseismicforces
CHARACTERISTICS OF MRF
❖Definition of Ductility
10
•dissipateenergythroughtheirductilityandmay
undergoexcessivelateraldeformations.
•ductilityisachievedbytheformationofplastichingesin
thecolumnsandbeams.
•whentheyaredeformedbeyondtheirelasticlimits,a
largepartoftheenergyisdissipatedbytheplastic
hinges.
•ductilityofreinforcedconcretedependsonthedesign.
•Inreinforcedconcreterigidframes,itisnecessaryto
designthecolumnstobestrongerthanthebeamsso
thatplastichingescanbeformedinthebeams.
CHARACTERISTICS OF MRF
❖Ductility in Rigid Frames
16
•flexuralreinforcement:
1.similartoordinarymomentbeams.
2.Thelimitsofgrossreinforcementratio:
•Shearreinforcement:
a.minimumtiesarerequiredintherectangularsections:
1.Minimumdiameteroftiesis10mm(#3).
2.Maximumspacingoftiesisgivenas:
✓b=Dimensionoftheshortersideofthemember.
✓db=Diameterofthemainreinforcementbars.
✓dt=Diameterofthetiebars.
ORDINARY CONCRETE MOMENT FRAMES (OMF) SDC B
❖General Requirements: Frame Columns
•Thespacingofspirals:
1.smax=80mm(3in)
2.smin=25mm(1in)
Ratio of the volume of spirals to the
volume of concrete
28
•Theamountandspacingofhoopsintheplastichingeregion
mustextendthroughthejointasshowninfigure.
•Thespacingofhoopsinthemiddleofthebeamshallneither
exceed6dbnor150mm(6in)and5db.
SPECIAL CONCRETE MOMENT FRAMES (SMRF) SDC D-E-F
❖Transversal Reinforcement: Frame Columns
29
STEEL MOMENT FRAME DESIGN REQUIREMENTS
AND ASSUMPTIONS
PART 2
30
•steelmomentframeshavebeeninuseformorethanonehundredyears.
•Itwasbelievedthat:
1.Weldedsteelmoment-framebuildingsasbeingamongthemost
ductilesystemscontainedinthebuildingcode.
2.Thesteelmoment-framebuildingswereessentiallyinvulnerableto
earthquake-inducedstructuraldamageandthoughtthatshouldsuch
damageoccur,itwouldbelimitedtoductileyieldingofmembers
andconnections.
3.thetypicalconnectionemployedinsteelmoment-frame
construction,wascapableofdevelopinglargeplasticrotations,
withoutsignificantstrengthdegradation.
•Followingthe1994Northridgeearthquake,engineersweresurprisedto
discoverthatmorethan20modernspecialsteelmomentframestructures
hadexperiencedbrittlefracturingoftheirweldedbeam-to-column
connections.
HISTORY OF SPECIAL MOMENT FRAME DEVELOPMENT
❖History Of Steel Moment Frame
31
•Manydifferenttypesoffractureswerealso
discovered,themajorityinitiatingwherethe
bottombeamflangejoinedthecolumnflange.
•TheSACresearch,conductedatacostof$12
millionovereightyears,resultedinthebasisfor
thecurrentdesignprovisionsformomentframes
containedinAISC341,AISC358,andAWSD1.8.
HISTORY OF SPECIAL MOMENT FRAME DEVELOPMENT
❖History Of Steel Moment Frame
32
•Typically,butnotalways,fractures
initiatedatthecompletejointpenetration
(CJP)weldbetweenthebeambottom
flangeandcolumnflange(Figure1-2).
•Onceinitiated,thesefracturesprogressed
alonganumberofdifferentpaths,
dependingontheindividualjoint
conditions.
HISTORY OF SPECIAL MOMENT FRAME DEVELOPMENT
❖History Of Steel Moment Frame
42
•Theydonothavestructuralwallsordiagonalbraces.
•Imposesmallerforcesonfoundationsthandootherstructuralsystems.
•Providearchitecturalfreedomindesign,permittingopenbaysand
unobstructedviewlines.
FEATURES OF STEEL MOMENT FRAME
1. Advantages
2. Disadvantages
•canbemorecostlytoconstructthanbracedframeorshearwallstructures.
•Theaddedcostresultsfromtheuseoflargersectionsinmomentframes
thaniscommoninbracedstructuresandmorelabor-intensiveconnections.
•drift-sensitivenonstructuralcomponents,suchascladdingandglazing,can
experiencemoredamageinthesestructurescomparedwithother
structuraltypes
43
•ThereducedseismicforcesdecreasesprogressivelyfromOMRFtoIMRFto
SMRF.
•Theaddedlevelofdetailingrequiredforthebetter-performingsystemscan
significantlyincreaseconstructioncost.
•lateraldriftoftencontroltheselectionofmomentframemembersizes
•Thereducedrequiredstrengthassociatedwiththemoreductilesystemsdo
notnecessarilytranslatetosavingsinmembersizesorframeweight.
•FortallbuildingsinSDC-D,E,andF,usedualsystems,inwhichsteelspecial
momentframescapableofprovidingatleast25%oftherequiredlateral
strengthareusedincombinationwithshearwallsorbracedframes.
•Thedualsystemallowseconomicalcontroloflateraldrift
SteelMoment Frames Features
FEATURES OF STEEL MOMENT FRAME
54
•Thepanelzoneshearstrength(Vn)ofDSTconnectionsforrectangularCFTcolumnsis
contributedfromtwoparts
1.theshearstrengthofsteeltubewallsinthepanelzone(Vtw)
2.theconcretecompressionstrut(Vcs).
•ThedesignequationsproposedbyKoester(2000)wereusedtocalculatethepanelzone
shearzonestrengthasfollows:
COMPOSITE SPECIAL MOMENT RESISTING FRAME
❖Double Split-tee Connections DstConnection
55
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
ThisexamplepresentsthedesignofaDSTconnectionasaninteriorjointinaC-SMF.
oThewideflangebeamsareASTMA992(2015)wideflangesections(W24×76,Fy=345MPa,Fu=448
MPa,Ry=1.1).
oThebeamdepth(h)is607mm,flangewidth(bf)is228mm,flangethickness(tbf)is17.3mm,andweb
thickness(tbw)is11.2mm.
oTheCFTcolumnsHollowSteelSection(HSS)406.4×406.4×19.1madefromASTMA500(2018)GradeB
steel(Fy=317MPa,Fu=448MPa)andfilledwithnormal-weight,55.2MPaconcrete(f′c).
oA490boltswiththediameter(dbt)of25.4mmareused.
oThedistributeddeadandliveloadsconsideredonthebeamsare12.3kN/mand8.8kN/m,respectively.
oThebeamandcolumnlengthareLb=9,144mmandLc=3,810mm,respectively.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
56
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
COMPOSITE SPECIAL MOMENT RESISTING FRAME
57
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
A14-stepdesignprocedureisproposedasfollows:
•Step1:Calculatetheflexuralandsheardemandsfortheconnectionatthefaceofthe
column,andthenusetheflexuraldemandtocalculatethebeamflangeforcesinthe
DSTconnection.Thesedemandsshouldincludeamaterialoverstrengthfactor,Ry,and
afactortoaccountforpeakconnectionstrength,includingstrainhardening,local
restraint,additionalreinforcement,andotherconnectionconditions,Cpr.
•Step2:Determinethelengthandsizeofweldsrequiredtoresistthebeam
•flangeforcesintheconnection.
•Step3:EstimatetheflangeforceintheT-stubcausedbytheexpectedmomentatthe
faceofthecolumn.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
58
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
•Step4:SizetheT-stembasedonlimitstatesofgrosssectionyielding,netsection
fracture,andcompressioncausedbyflexuralbuckling.
•Step5:DeterminethesizeoftheboltsconnectingtheT-stubflangestothecolumn.
•Step6:DetermineaninitialconfigurationoftheT-flange,includingthelayoutofthe
bolts,widthoftheT-stubflanges,andflangethicknesstominimizeoreliminateprying
action.
•Step7:SelectaW-shapeorfinalsizesofbuilt-upplatesfordimensionsoftheT-stub.
•Step8:Checktheconnectionrotationalstiffnesstoensurethattheconnectionis
classifiedasfullyrestrained.
•Step9:ComputethemaximumforceintheT-stubusingactualT-stubdimensionschosen
inStep7.
COMPOSITE SPECIAL MOMENT RESISTING FRAME
59
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
•Step10:Back-checkthestrengthoftheweldwiththeactualflangeforcetoensure
theweldhasadequatestrengthtoresisttheactualflangeforce.
•Step11:Back-checkthestrengthoftheT-stemusingthemaximumbeamflange
forcecalculatedinStep9.Thisincludesgrosssectionyielding,netsectionfracture,
andflexuralbucklingstrengthsoftheT-stem.
•Step12:Back-checktheflangestrengthoftheT-stubusingthemaximumbeam
flangeforcecalculatedinStep9.
•Step13:Determinetheconfigurationoftheshearconnectiontotheweb
consideringeccentricloadingonthebolts.
•Step14:CheckpanelzonestrengthusingEquation(3-1).
COMPOSITE SPECIAL MOMENT RESISTING FRAME
60
❖DESIGN EXAMPLE FOR A WELDED DST CONNECTION
•Step10:Back-checkthestrengthoftheweldwiththeactualflangeforcetoensure
theweldhasadequatestrengthtoresisttheactualflangeforce.
•Step11:Back-checkthestrengthoftheT-stemusingthemaximumbeamflange
forcecalculatedinStep9.Thisincludesgrosssectionyielding,netsectionfracture,
andflexuralbucklingstrengthsoftheT-stem.
•Step12:Back-checktheflangestrengthoftheT-stubusingthemaximumbeam
flangeforcecalculatedinStep9.
•Step13:Determinetheconfigurationoftheshearconnectiontotheweb
consideringeccentricloadingonthebolts.
•Step14:CheckpanelzonestrengthusingEquation(3-1).
COMPOSITE SPECIAL MOMENT RESISTING FRAME