Introduction to
CMOS VLSI
Design
MOS devices: static and
dynamic behavior
MOS equations Slide 2CMOS VLSI Design
Outline
DC Response
Logic Levels and Noise Margins
Transient Response
Delay Estimation
MOS equations Slide 3CMOS VLSI Design
Activity
1)
If the width of a transistor increases, the current will
increase decrease not change
2)
If the length of a transistor increases, the current will
increase decrease not change
3)
If the supply voltage of a chip increases, the maximum
transistor current will
increase decrease not change
4)
If the width of a transistor increases, its gate capacitance will
increase decrease not change
5)
If the length of a transistor increases, its gate capacitance will
increase decrease not change
6)
If the supply voltage of a chip increases, the gate capacitance
of each transistor will
increase decrease not change
MOS equations Slide 4CMOS VLSI Design
Activity
1)
If the width of a transistor increases, the current will
increase decrease not change
2)
If the length of a transistor increases, the current will
increase decrease not change
3)
If the supply voltage of a chip increases, the maximum
transistor current will
increase decrease not change
4)
If the width of a transistor increases, its gate capacitance will
increase decrease not change
5)
If the length of a transistor increases, its gate capacitance will
increase decrease not change
6)
If the supply voltage of a chip increases, the gate capacitance
of each transistor will
increase decrease not change
MOS equations Slide 5CMOS VLSI Design
DC Response
DC Response: V
out
vs. V
in
for a gate
Ex: Inverter
–When V
in
= 0 -> V
out
= V
DD
–When V
in = V
DD -> V
out = 0
–In between, V
out depends on
transistor size and current
–By KCL, must settle such that
I
dsn = |I
dsp|
–We could solve equations
–But graphical solution gives more insight
I
dsn
I
dsp
V
out
V
DD
V
in
MOS equations Slide 6CMOS VLSI Design
Transistor Operation
Current depends on region of transistor behavior
For what V
in
and V
out
are nMOS and pMOS in
–Cutoff?
–Linear?
–Saturation?
MOS equations Slide 7CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
V
gsn
< V
gsn
>
V
dsn
<
V
gsn
>
V
dsn >
I
dsn
I
dsp
V
out
V
DD
V
in
MOS equations Slide 8CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
V
gsn
< V
tn
V
gsn
> V
tn
V
dsn
< V
gsn
– V
tn
V
gsn
> V
tn
V
dsn > V
gsn – V
tn
I
dsn
I
dsp
V
out
V
DD
V
in
MOS equations Slide 9CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
V
gsn
< V
tn
V
gsn
> V
tn
V
dsn
< V
gsn
– V
tn
V
gsn
> V
tn
V
dsn > V
gsn – V
tn
I
dsn
I
dsp
V
out
V
DD
V
in
V
gsn = V
in
V
dsn = V
out
MOS equations Slide 10CMOS VLSI Design
nMOS Operation
Cutoff Linear Saturated
V
gsn
< V
tn
V
in
< V
tn
V
gsn
> V
tn
V
in
> V
tn
V
dsn
< V
gsn
– V
tn
V
out
< V
in
- V
tn
V
gsn
> V
tn
V
in
> V
tn
V
dsn
> V
gsn
– V
tn
V
out
> V
in
- V
tn
I
dsn
I
dsp
V
out
V
DD
V
in
V
gsn = V
in
V
dsn = V
out
MOS equations Slide 11CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
V
gsp
> V
gsp
<
V
dsp
>
V
gsp
<
V
dsp
<
I
dsn
I
dsp
V
out
V
DD
V
in
MOS equations Slide 12CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
V
gsp
> V
tp
V
gsp
< V
tp
V
dsp
> V
gsp
– V
tp
V
gsp
< V
tp
V
dsp
< V
gsp
– V
tp
I
dsn
I
dsp
V
out
V
DD
V
in
MOS equations Slide 13CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
V
gsp
> V
tp
V
gsp
< V
tp
V
dsp
> V
gsp
– V
tp
V
gsp
< V
tp
V
dsp
< V
gsp
– V
tp
I
dsn
I
dsp
V
out
V
DD
V
in
V
gsp = V
in
- V
DD
V
dsp = V
out
- V
DD
V
tp < 0
MOS equations Slide 14CMOS VLSI Design
pMOS Operation
Cutoff Linear Saturated
V
gsp
> V
tp
V
in
> V
DD
+ V
tp
V
gsp
< V
tp
V
in
< V
DD
+ V
tp
V
dsp
> V
gsp
– V
tp
V
out
> V
in
- V
tp
V
gsp
< V
tp
V
in
< V
DD
+ V
tp
V
dsp
< V
gsp
– V
tp
V
out
< V
in
- V
tp
I
dsn
I
dsp
V
out
V
DD
V
in
V
gsp = V
in
- V
DD
V
dsp = V
out
- V
DD
V
tp < 0
MOS equations Slide 15CMOS VLSI Design
I-V Characteristics
Make pMOS is wider than nMOS such that
n =
p
V
gsn5
V
gsn4
V
gsn3
V
gsn2
V
gsn1
V
gsp5
V
gsp4
V
gsp3
V
gsp2
V
gsp1
V
DD
-V
DD
V
dsn
-V
dsp
-I
dsp
I
dsn
0
MOS equations Slide 16CMOS VLSI Design
Current vs. V
out
, V
in
V
in5
V
in4
V
in3
V
in2
V
in1
V
in0
V
in1
V
in2
V
in3
V
in4
I
dsn
, |I
dsp
|
V
out
V
DD
MOS equations Slide 17CMOS VLSI Design
Load Line Analysis
V
in5
V
in4
V
in3
V
in2
V
in1
V
in0
V
in1
V
in2
V
in3
V
in4
I
dsn
, |I
dsp
|
V
out
V
DD
For a given V
in:
–Plot I
dsn, I
dsp vs. V
out
–V
out must be where |currents| are equal in
I
dsn
I
dsp
V
out
V
DD
V
in
MOS equations Slide 18CMOS VLSI Design
Load Line Analysis
V
in0
V
in0
I
dsn
, |I
dsp
|
V
out
V
DD
V
in = 0
MOS equations Slide 19CMOS VLSI Design
Load Line Analysis
V
in1
V
in1I
dsn
, |I
dsp
|
V
out
V
DD
V
in = 0.2V
DD
MOS equations Slide 20CMOS VLSI Design
Load Line Analysis
V
in2
V
in2
I
dsn
, |I
dsp
|
V
out
V
DD
V
in = 0.4V
DD
MOS equations Slide 21CMOS VLSI Design
Load Line Analysis
V
in3
V
in3
I
dsn
, |I
dsp
|
V
out
V
DD
V
in = 0.6V
DD
MOS equations Slide 22CMOS VLSI Design
Load Line Analysis
V
in4
V
in4
I
dsn
, |I
dsp
|
V
out
V
DD
V
in = 0.8V
DD
MOS equations Slide 23CMOS VLSI Design
Load Line Analysis
V
in5
V
in0
V
in1
V
in2
V
in3
V
in4
I
dsn
, |I
dsp
|
V
out
V
DD
V
in = V
DD
MOS equations Slide 24CMOS VLSI Design
Load Line Summary
V
in5
V
in4
V
in3
V
in2
V
in1
V
in0
V
in1
V
in2
V
in3
V
in4
I
dsn
, |I
dsp
|
V
out
V
DD
MOS equations Slide 25CMOS VLSI Design
DC Transfer Curve
Transcribe points onto V
in vs. V
out plot
V
in5
V
in4
V
in3
V
in2
V
in1
V
in0
V
in1
V
in2
V
in3
V
in4
V
out
V
DD
C
V
out
0
V
in
V
DD
V
DD
A B
D
E
V
tn
V
DD
/2 V
DD
+V
tp
MOS equations Slide 26CMOS VLSI Design
Operating Regions
Revisit transistor operating regions
C
V
out
0
V
in
V
DD
V
DD
A B
D
E
V
tn
V
DD
/2 V
DD
+V
tp
Region nMOS pMOS
A
B
C
D
E
MOS equations Slide 27CMOS VLSI Design
Operating Regions
Revisit transistor operating regions
C
V
out
0
V
in
V
DD
V
DD
A B
D
E
V
tn
V
DD
/2 V
DD
+V
tp
Region nMOS pMOS
A Cutoff Linear
B SaturationLinear
C SaturationSaturation
D Linear Saturation
E Linear Cutoff
MOS equations Slide 28CMOS VLSI Design
Beta Ratio
If
p /
n 1, switching point will move from V
DD/2
Called skewed gate
Other gates: collapse into equivalent inverter
V
out
0
V
in
V
DD
V
DD
0.5
1
2
10
p
n
0.1
p
n
MOS equations Slide 29CMOS VLSI Design
Noise Margins
How much noise can a gate input see before it does
not recognize the input?
Indeterminate
Region
NM
L
NM
H
Input CharacteristicsOutput Characteristics
V
OH
V
DD
V
OL
GND
V
IH
V
IL
Logical High
Input Range
Logical Low
Input Range
Logical High
Output Range
Logical Low
Output Range
MOS equations Slide 30CMOS VLSI Design
Logic Levels
To maximize noise margins, select logic levels at
V
DD
V
in
V
out
V
DD
p
/
n
> 1
V
in
V
out
0
MOS equations Slide 31CMOS VLSI Design
Logic Levels
To maximize noise margins, select logic levels at
–unity gain point of DC transfer characteristic
V
DD
V
in
V
out
V
OH
V
DD
V
OL
V
IL
V
IH
V
tn
Unity Gain Points
Slope = -1
V
DD
-
|V
tp
|
p
/
n
> 1
V
in
V
out
0
MOS equations Slide 32CMOS VLSI Design
Transient Response
DC analysis tells us V
out if V
in is constant
Transient analysis tells us V
out(t) if V
in(t) changes
–Requires solving differential equations
Input is usually considered to be a step or ramp
–From 0 to V
DD or vice versa
MOS equations Slide 33CMOS VLSI Design
Inverter Step Response
Ex: find step response of inverter driving load cap
0
( )
(
)
)
(
o
i
ut
n
out
V t t
t
V
t
V
d
d
t
V
in
(t)
V
out
(t)
C
load
I
dsn
(t)
MOS equations Slide 34CMOS VLSI Design
Inverter Step Response
Ex: find step response of inverter driving load cap
0
0
()
( )
()
( )
ou
DDin
t
out
u t t V
d
d
t
t t
V t
V
V
t
V
in
(t)
V
out
(t)
C
load
I
dsn
(t)
MOS equations Slide 35CMOS VLSI Design
Inverter Step Response
Ex: find step response of inverter driving load cap
0
0
(
( ))
(
(
)
)
DD
Do
i
D
o t
n
ut
u
V t
u t t V
V
d
d
t
t
V
V
t
t
V
in
(t)
V
out
(t)
C
load
I
dsn
(t)
MOS equations Slide 36CMOS VLSI Design
Inverter Step Response
Ex: find step response of inverter driving load cap
0
0
( )
()
()
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
0
( )
DD tout
ou
ds
t DD t
n
I t V V
VV V
V
t t
V
in
(t)
V
out
(t)
C
load
I
dsn
(t)
MOS equations Slide 37CMOS VLSI Design
Inverter Step Response
Ex: find step response of inverter driving load cap
0
0
( )
()
()
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
0
2
2
0
2
)
)
(
( )
(
DD DD t
DD
out
out
out out D t
n
t
ds
D
I V
t t
V V V V
V V V V V
t
V t
V t
V
in
(t)
V
out
(t)
C
load
I
dsn
(t)
MOS equations Slide 38CMOS VLSI Design
Inverter Step Response
Ex: find step response of inverter driving load cap
0
0
( )
()
()
(
(
)
)
DD
DD
loa
d
ou
i
d
t
o
n
ut sn
V
V
u t t V
t t
V t
V
d
dt C
t
I t
0
2
2
0
2
)
)
(
( )
(
DD DD t
DD
out
out
out out D t
n
t
ds
D
I V
t t
V V V V
V V V V V
t
V t
V t
V
out
(t)
V
in
(t)
t
0
t
V
in
(t)
V
out
(t)
C
load
I
dsn
(t)
MOS equations Slide 39CMOS VLSI Design
Delay Definitions
t
pdr:
t
pdf
:
t
pd:
t
r
:
t
f: fall time
MOS equations Slide 40CMOS VLSI Design
Delay Definitions
t
pdr: rising propagation delay
–From input to rising output crossing V
DD/2
t
pdf: falling propagation delay
–From input to falling output crossing V
DD/2
t
pd: average propagation delay
–t
pd = (t
pdr + t
pdf)/2
t
r: rise time
–From output crossing 0.2 V
DD to 0.8 V
DD
t
f: fall time
–From output crossing 0.8 V
DD to 0.2 V
DD
MOS equations Slide 41CMOS VLSI Design
Delay Definitions
t
cdr: rising contamination delay
–From input to rising output crossing V
DD/2
t
cdf: falling contamination delay
–From input to falling output crossing V
DD
/2
t
cd
: average contamination delay
–t
pd
= (t
cdr
+ t
cdf
)/2
MOS equations Slide 42CMOS VLSI Design
Simulated Inverter Delay
Solving differential equations by hand is too hard
SPICE simulator solves the equations numerically
–Uses more accurate I-V models too!
But simulations take time to write
(V)
0.0
0.5
1.0
1.5
2.0
t(s)
0.0 200p 400p 600p 800p 1n
t
pdf
= 66ps t
pdr
= 83ps
V
in
V
out
MOS equations Slide 43CMOS VLSI Design
Delay Estimation
We would like to be able to easily estimate delay
–Not as accurate as simulation
–But easier to ask “What if?”
The step response usually looks like a 1
st
order RC
response with a decaying exponential.
Use RC delay models to estimate delay
–C = total capacitance on output node
–Use effective resistance R
–So that t
pd
= RC
Characterize transistors by finding their effective R
–Depends on average current as gate switches
MOS equations Slide 44CMOS VLSI Design
RC Delay Models
Use equivalent circuits for MOS transistors
–Ideal switch + capacitance and ON resistance
–Unit nMOS has resistance R, capacitance C
–Unit pMOS has resistance 2R, capacitance C
Capacitance proportional to width
Resistance inversely proportional to width
kg
s
d
g
s
d
kC
kC
kC
R/k
kg
s
d
g
s
d
kC
kC
kC
2R/k
MOS equations Slide 45CMOS VLSI Design
Example: 3-input NAND
Sketch a 3-input NAND with transistor widths chosen
to achieve effective rise and fall resistances equal to
a unit inverter (R).
MOS equations Slide 46CMOS VLSI Design
Example: 3-input NAND
Sketch a 3-input NAND with transistor widths chosen
to achieve effective rise and fall resistances equal to
a unit inverter (R).
MOS equations Slide 47CMOS VLSI Design
Example: 3-input NAND
Sketch a 3-input NAND with transistor widths chosen
to achieve effective rise and fall resistances equal to
a unit inverter (R).
3
3
222
3
MOS equations Slide 48CMOS VLSI Design
3-input NAND Caps
Annotate the 3-input NAND gate with gate and
diffusion capacitance.
2 2 2
3
3
3
MOS equations Slide 50CMOS VLSI Design
3-input NAND Caps
Annotate the 3-input NAND gate with gate and
diffusion capacitance.
9C
3C
3C
3
3
3
222
5C
5C
5C
MOS equations Slide 51CMOS VLSI Design
Elmore Delay
ON transistors look like resistors
Pullup or pulldown network modeled as RC ladder
Elmore delay of RC ladder
R
1
R
2
R
3
R
N
C
1
C
2
C
3
C
N
nodes
1 1 1 2 2 1 2
... ...
pd i to source i
i
N N
t R C
RC R R C R R R C
MOS equations Slide 52CMOS VLSI Design
Example: 2-input NAND
Estimate worst-case rising and falling delay of 2-
input NAND driving h identical gates.
h copies
2
2
22
B
A
x
Y
MOS equations Slide 53CMOS VLSI Design
Example: 2-input NAND
Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies6C
2C
2
2
22
4hC
B
A
x
Y
MOS equations Slide 54CMOS VLSI Design
Example: 2-input NAND
Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies6C
2C
2
2
22
4hC
B
A
x
Y
R
(6+4h)C
Y
pdr
t
MOS equations Slide 55CMOS VLSI Design
Example: 2-input NAND
Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies6C
2C
2
2
22
4hC
B
A
x
Y
R
(6+4h)C
Y 6 4
pdr
t h RC
MOS equations Slide 56CMOS VLSI Design
Example: 2-input NAND
Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies6C
2C
2
2
22
4hC
B
A
x
Y
MOS equations Slide 57CMOS VLSI Design
Example: 2-input NAND
Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies6C
2C
2
2
22
4hC
B
A
x
Y
pdf
t
(6+4h)C2C
R/2
R/2
x Y
MOS equations Slide 58CMOS VLSI Design
Example: 2-input NAND
Estimate rising and falling propagation delays of a 2-
input NAND driving h identical gates.
h copies6C
2C
2
2
22
4hC
B
A
x
Y
2 2 2
2 6 4
7 4
R R R
pdf
t C h C
h RC
(6+4h)C2C
R/2
R/2
x Y
MOS equations Slide 59CMOS VLSI Design
Delay Components
Delay has two parts
–Parasitic delay
•6 or 7 RC
•Independent of load
–Effort delay
•4h RC
•Proportional to load capacitance
MOS equations Slide 60CMOS VLSI Design
Contamination Delay
Best-case (contamination) delay can be substantially
less than propagation delay.
Ex: If both inputs fall simultaneously
6C
2C
2
2
22
4hC
B
A
x
Y
R
(6+4h)C
Y
R
3 2
cdr
t h RC
MOS equations Slide 61CMOS VLSI Design
7C
3C
3C
3
3
3
222
3C
2C2C
3C3C
Isolated
Contacted
Diffusion
Merged
Uncontacted
Diffusion
Shared
Contacted
Diffusion
Diffusion Capacitance
we assumed contacted diffusion on every s / d.
Good layout minimizes diffusion area
Ex: NAND3 layout shares one diffusion contact
–Reduces output capacitance by 2C
–Merged uncontacted diffusion might help too
MOS equations Slide 62CMOS VLSI Design
Layout Comparison
Which layout is better?
A
V
DD
GND
B
Y
A
V
DD
GND
B
Y