MOSFETs

22,658 views 87 slides Oct 24, 2019
Slide 1
Slide 1 of 87
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87

About This Presentation

MOSFET basics are discussed here


Slide Content

MOSFETs
Mr. A. B. Shinde

Mr. A. B. Shinde
FET
2
FieldEffectTransistor(FET)
•Theconductivity(orresistivity)ofthepathbetweentwocontacts,the
sourceandthedrain,isalteredbythevoltageappliedtothegate.
–Deviceisalsoknownasavoltagecontrolledresistor.

Mr. A. B. Shinde
MOSFETs
3
Ametal–oxide–semiconductorfield-effecttransistor(MOSFET,MOS-
FET,orMOSFET)isafield-effecttransistorwherethevoltage
determinestheconductivityofthedevice.
Theabilitytochangeconductivitywiththeamountofappliedvoltagecan
beusedforamplifyingorswitchingelectronicsignals.
MOSFETsarenowevenmorecommonthanBJTs(bipolarjunction
transistors)indigitalandanalogcircuits.

Mr. A. B. Shinde
FET
4
n-channel
Enhancement Mode
(nMOSFET)
p-channel
Enhancement Mode
(pMOSFET)
n-channel
Depletion Mode
(nMOSFET)
p-channel
Depletion Mode
(pMOSFET)

Mr.A.B.Shinde
MOSFET:Structure
5
TypicallyL=0.03μmto1μm,W=0.05
μmto100μm,andthethicknessofthe
oxidelayer(tox)isintherangeof1to
10nm.
perspectiveview;
Crosssection.

Mr. A. B. Shinde
MOSFET : Operation
6
OperationwithZeroGateVoltage:
•Withzerovoltageappliedtothegate,twoback-to-backdiodesexistin
seriesbetweendrainandsource.
•n+drainregionandthep-typesubstrate,
•p-typesubstrateandthen+sourceregion.
•Theseback-to-backdiodespreventcurrentconductionfromdrainto
sourcewhenavoltageV
DSisapplied.
•Thepathbetweendrainandsourcehasaveryhighresistance(ofthe
orderof10
12
Ω).

Mr. A. B. Shinde
MOSFET : Operation
7
ChannelforCurrentFlow:
•Source&Drainaregroundedand
appliedapositivevoltagetothe
gate(V
GS).
•V
GSrepellsthefreeholesfromthe
regionofthesubstrateunderthe
gate(thechannelregion).
•Theseholesarepusheddownward
intothesubstrate,leavingbehinda
carrier-depletionregion.
•PositiveV
GSattractselectronsfrom
then+sourceanddrainregions
intothechannelregion
•Whenasufficientnumberofelectrons
accumulatenearthesurfaceofthe
substrateunderthegate,annregionis
ineffectcreated,connectingthesource
anddrainregions,

Mr. A. B. Shinde
MOSFET : Operation
8
ChannelforCurrentFlow:
•Ifavoltageisappliedbetween
drainandsource,currentflows
throughthisinducednregion.
•Theinducednregionthusformsa
channelforcurrentflowfrom
draintosource
•Thisiscalledann-channel
MOSFEToranNMOStransistor.
•Thechanneliscreatedbyinverting
thesubstratesurfacefromptype
tontype.Hencetheinduced
channelisalsocalledaninversion
layer.
Note:Ann-channelMOSFETisformedinap-type
substrate
TheexcessofV
GSoverV
tistermedthe
effectivevoltageortheoverdrive
voltageandisthequantitythat
determinesthechargeinthechannel.
Here,V
GS−V
t≡V
OV

Mr. A. B. Shinde
MOSFET
9
•GateandChannelregionoftheMOSFETformaparallel-plate
capacitor,withtheoxidelayeractingasthecapacitordielectric.
•Positivegatevoltagecausespositivechargetoaccumulateonthetop
plateofthecapacitor(thegateelectrode).
•Negativechargeonthebottomplateisformedbytheelectronsinthe
inducedchannel.
•Thisfieldcontrolstheamountofchargeinthechannelhenceit
determinesthechannelconductivitywhenavoltageV
DSisapplied.
•Thisistheoriginofthename“field-effecttransistor”(FET).

Mr. A. B. Shinde
MOSFET : Operation
10
ApplyingaSmallV
DS:
•ThevoltageV
DScausesa
currenti
Dtoflowthroughthe
inducednchannel.
•Currentiscarriedbyfree
electronstravelingfromsource
todrain
•AnNMOStransistorwithV
GS>
V
tandwithasmallV
DSapplied.
Thedeviceactsasaresistance
whosevalueisdeterminedby
V
GS.
•Specifically,the channel
conductanceisproportionalto
V
GS–V
t,andthusi
Dis
proportionalto(V
GS–V
t)V
DS. depletion region is not
shown for simplicity.

Mr. A. B. Shinde
MOSFET : Operation
11
•ApplyingaSmallV
DS:
•Thei
D–V
DScharacteristicsof
theMOSFETwhenthevoltage
appliedbetweendrainand
source,vDS,iskeptsmall.
•Thedeviceoperatesasa
linearresistancewhosevalue
iscontrolledbyV
GS.

Mr. A. B. Shinde
MOSFET : Operation
12
OperationoftheenhancementNMOS
transistorasV
DSisincreased.Theinduced
channelacquiresataperedshape,andits
resistanceincreasesasv
DSisincreased.
Here,v
GSiskeptconstantatavalue>V
t;
V
GS=V
t+V
OV.
Thedraincurrenti
DVsV
DSforan
enhancement-typeNMOStransistor
operatedwith
V
GS=V
t+V
OV.

Mr. A. B. Shinde
MOSFET : p-Channel
13
Physical structure of
the PMOS transistor

Mr. A. B. Shinde
FET
14
Circuitsymbol
forthen-channel
enhancement-
typeMOSFET
Modified symbol
n channel.
Simplified circuit
symbol

Mr. A. B. Shinde
MOSFET: I
D-V
DSCharacteristics
15

Mr. A. B. Shinde
MOSFET: I
D-V
DSCharacteristics
16
Thei
D−v
DScharacteristics
foranenhancement-type
NMOStransistor

Biasing in MOS Circuits

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
18
•AnessentialstepinthedesignofaMOSFETamplifiercircuitisthe
establishmentofanappropriatedcoperatingpointforthetransistor.
•Thisstepisalsoknownasbiasingorbiasdesign.
•Anappropriatedcoperatingpointorbiaspointischaracterizedbya
stableandpredictabledcdraincurrentI
Dandbyadcdrain-to-source
voltageV
DSthatensuresoperationinthesaturationregionforall
expectedinput-signallevels.
•TypesofBiasing:
–BiasingbyFixingV
GS
–BiasingbyFixingVGandConnectingaResistanceintheSource
–BiasingUsingaDrain-to-GateFeedbackResistor
–BiasingUsingaConstant-CurrentSource

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
19
BiasingbyFixingV
GS:
•ThemostcommonapproachtobiasingaMOSFETistofixitsgate-to-
sourcevoltageV
GStothevaluerequiredtoprovidethedesiredI
D.
•ThisvoltageisderivedfromthepowersupplyvoltageV
DDthroughthe
useofanappropriatevoltagedivider.
•IndependentofhowthevoltageV
GSmaybegenerated,thisisnota
goodapproachtobiasingaMOSFET.
Becauseweknowthat,
AndthethresholdvoltageV
Otheoxide-capacitanceC
OX,andtransistor
aspectratioW/Lvarywidelyamongdevicesofsamesizeandtype.

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
20
•BiasingbyFixingV
GS:
•BiasingbyfixingV
GSisnota
goodtechnique.
•Figuretwoi
D-v
GScharacteristic
curvesrepresentingextreme
valuesinabatchofMOSFETs
ofthesametype.
•ForthefixedvalueofV
GS,the
resultantspreadinthevalues
ofthedraincurrentcanbe
substantial.

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
21
•Anexcellentbiasingtechniquefordiscrete
MOSFETcircuitsconsistsoffixingthedcvoltage
atthegate,V
G,andconnectingaresistanceinthe
sourcelead,asshowninfigure.
We can write,
V
G= V
GS+ R
SI
D
BiasingbyFixingV
GandConnectinga
ResistanceintheSource:

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
22
BiasingbyFixingV
GandConnectinga
ResistanceintheSource:
•IfV
G>>V
GS,I
Dwillbedeterminedbythevalues
ofV
GandR
S.
•IfV
G>V
GS,resistorR
sprovidesnegative
feedback,whichwillstabilizethevalueofthebias
currentI
D.
•Fromequation,whenI
Dincreases&V
Gis
constant,V
GSwilldecrease.Whichwillfurther
decreaseI
D.
•ThustheR
sworkstokeepI
Dasconstantas
possible.
•ThisnegativefeedbackactionofR
sgivesitthe
namedegenerationresistance.
V
G= V
GS+ R
SI
D

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
23
•Figureshowsthei
D–v
GScharacteristics
fortwodevicesthatrepresentthe
extremesofabatchofMOSFETs.
•Astraightlinethatrepresentsthe
constraintimposedbythebiascircuit—
namely.
•Theintersectionofthisstraightlinewith
thei
D–v
GScharacteristiccurveprovides
thecoordinates(I
DandV
GS)ofthebias
point.
•Inthiscase,thevariabilityobtainedinI
D
ismuchsmaller.Also,notethatthe
variabilitydecreasesasV
GandR
sare
madelarger.
BiasingbyFixingV
GandConnectingaResistanceintheSource:

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
24
BiasingbyFixingV
GandConnectinga
ResistanceintheSource:
Practicalimplementationusingasingle
supply:
•Thecircuitutilizesonepower-supplyV
DDand
derivesV
Gthroughavoltagedivider(R
G1,R
G2).
•SinceI
G=0,R
G1andR
G2canbeselectedtobe
verylarge(intheMΩrange),allowingthe
MOSFETtopresentalargeinputresistancetoa
signalsource

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
25
BiasingUsingaDrain-to-GateFeedback
Resistor:
•Asimpleandeffectivebiasingarrangementutilizing
afeedbackresistorconnectedbetweenthedrain
andthegateisshowninfigure.
•HerethelargefeedbackresistanceR
G(usuallyin
theMΩrange)forcesthedcvoltageatthegateto
beequaltothatatthedrain(becauseI
G=0).
Thuswecanwrite
V
GS= V
DS= V
DD–R
DI
D
Which can be rewritten in the form
V
DD= V
GS+ R
DI
D

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
26
•BiasingUsingaDrain-to-GateFeedback
Resistor:
•IfI
Dincreasesduetoanyreason,thenV
GSmust
decrease.
•ThedecreaseinV
GSinturncausesadecreasein
I
D.
•Thusthenegativefeedbackordegeneration
providedbyR
GworkstokeepthevalueofI
Das
constantaspossible.
V
DD= V
GS+ R
DI
D
V
GS= V
DS= V
DD–R
DI
D

Mr. A. B. Shinde
Biasing in MOS Amplifier Circuits
27
BiasingUsingaConstant-CurrentSource:
•ThemosteffectiveschemeforbiasingaMOSFET
amplifieristhatusingaconstant-currentsource,as
showninfigure.
•HereR
G(usuallyinMΩrange)establishesadc
groundatthegateandpresentsalargeresistance
toaninputsignalsourcethatcanbecapacitively
coupledtothegate.
•ResistorR
Destablishesanappropriatedcvoltage
atthedraintoallowfortherequiredoutputsignal
swingwhileensuringthatthetransistoralways
remainsinthesaturationregion.

Small Signal Operation Model

Mr. A. B. Shinde
Small-Signal Operation and Models
29
•Considertheconceptualamplifiercircuit
showninfigure.
•HeretheMOStransistorisbiasedby
applyingadcvoltageV
GS,andtheinput
signaltobeamplified,v
gs,issuperimposed
onthedcbiasvoltageV
GS.
•Theoutputvoltageistakenatthedrain.
Conceptualcircuitto
studytheoperation
oftheMOSFETasa
small-signalamplifier

Mr. A. B. Shinde
Small-Signal Operation and Models
30
•DCBiasPoint:
•ThedcbiascurrentI
Dcanbefoundbysettingthe
signalv
gstozero;
Thus,
Here,Itisassumedthatλ=0
Here,V
OV=V
GS−V
tistheoverdrivevoltageat
whichtheMOSFETisbiasedtooperate.
Thedcvoltageatthedrain,V
DS,willbe
V
DS= V
DD−R
DI
D

Mr. A. B. Shinde
Small-Signal Operation and Models
31
•DCBiasPoint:
•Toensuresaturation-regionoperation,we
musthave
V
DS> V
OV
•Furthermore,sincethetotalvoltageatthe
drainwillhaveasignalcomponent
superimposedonV
DS,V
DShastobe
sufficientlygreaterthanV
OVtoallowforthe
requirednegativesignalswing.

Mr. A. B. Shinde
Small-Signal Operation and Models
32
SignalCurrentintheDrainTerminal:
•Considerthesituationwiththeinputsignalv
gs
applied.
•Thetotalinstantaneousgate-to-sourcevoltage
willbe
v
GS= V
GS+ v
gs
resultinginatotalinstantaneousdraincurrent
i
D,
dc bias current I
D
current component that is directly proportional to the input signal v
gs
represents nonlinear distortion.

Mr.A.B.Shinde
Small-SignalOperationandModels
33
•SignalCurrentintheDrainTerminal:
•ToreducethenonlineardistortionintroducedbytheMOSFET,theinput
signalshouldbekeptsmallsothat
resultingin
or,equivalently,
Ifthissmall-signalconditionissatisfied,theni
Dcanbeexpressedas
i
D≈ I
D+i
d
where
i
d= k
n(V
GS−V
t)v
gs

Mr. A. B. Shinde
Small-Signal Operation and Models
34
Theparameterthatrelatesi
dandv
gsistheMOSFETtransconductance
g
m,
orintermsoftheoverdrivevoltageV
OV,
g
m= k
nV
OV

Mr. A. B. Shinde
Small-Signal Operation and Models
35
•Figure shows a
graphicalinterpretation
ofthesmall-signal
operationof the
MOSFETamplifier.
•Notethatg
misequalto
theslopeofthei
D–v
GS
characteristicatthebias
point,
Small-signal operation
of the MOSFET amplifier

Mr. A. B. Shinde
Small-Signal Operation and Models
36
VoltageGain:
•Totalinstantaneousdrainvoltagev
DSasfollows:
v
DS= V
DD−R
Di
D
•Underthesmall-signalcondition,wehave
v
DS= V
DD−R
D(I
D+i
d)
•whichcanberewrittenas
v
DS= V
DS−R
di
d
•Thusthesignalcomponentofthedrainvoltageis
V
ds=−i
dR
D=−g
mv
gsR
D
whichindicatesthatthevoltagegainisgivenby
Theminussignindicatesthattheoutputsignalv
dsis180°outofphasewithrespect
totheinputsignalv
gs.
Conceptual circuit to
study operation of the
MOSFET

Mr. A. B. Shinde
Small-Signal Operation and Models
37
VoltageGain:
•Theinputsignalisassumedtohaveatriangular
waveformwithanamplitudemuchsmallerthan
2(V
GS–V
t),thesmall-signalconditiontoensure
linearoperation.
•Foroperationinthesaturation(active)regionat
alltimes,theminimumvalueofv
DSshouldnot
fallbelowthecorrespondingvalueofv
GSby
morethanV
t.
•Themaximumvalueofv
DSshouldbesmaller
thanV
DD;otherwisetheFETwillenterthecutoff
regionandthepeaksoftheoutputsignal
waveformwillbeclippedoff.
Conceptual circuit to
study operation of
the MOSFET

Mr. A. B. Shinde
Small-Signal Operation and Models
38
VoltageGain:
Conceptual circuit to study
operation of the MOSFET
Total instantaneous voltages v
GSand v
DS

Mr. A. B. Shinde
Small-Signal Operation and Models
39
Small-SignalEquivalent-CircuitModels:
•TheFETbehavesasavoltage-controlledcurrentsource.
•Itacceptsasignalv
gsbetweengateandsourceandprovidesacurrent
g
m.v
gsatthedrainterminal.
•Theinputresistanceofthiscontrolledsourceisveryhigh—ideally,
infinite.
•Theoutputresistance—isalsohigh.

Mr. A. B. Shinde
Small-Signal Operation and Models
40
Small-SignalEquivalent-CircuitModels:
Small-signal models for the MOSFET:
Neglecting the dependence of i
D
on v
DSin the active region
includingtheeffectofchannel-length
modulation,modeled byoutput
resistance

Mr. A. B. Shinde
Small-Signal Operation and Models
41
Small-SignalEquivalent-CircuitModels:
•IntheanalysisofaMOSFETamplifiercircuit,
thetransistorcanbereplacedbythe
equivalent-circuitmodelshowninFigure.
•Therestofthecircuitremainsunchanged
exceptthatidealconstantdcvoltagesources
arereplacedbyshortcircuits.
•Mostseriousshortcomingofthismodelisthat
itassumesthedraincurrentinsaturationto
beindependentofthedrainvoltage,but
actuallydraincurrentdependsonv
DSina
linearmanner.
•Suchdependencewasmodeledbyafinite
resistancer
obetweendrainandsource,
Neglecting the
dependence of i
Don v
DSin
the active region
including the effect of channel-
length modulation,

Mr. A. B. Shinde
Small-Signal Operation and Models
42
Small-SignalEquivalent-CircuitModels:

MOSFET as Amplifier & Switch

Mr. A. B. Shinde
MOSFET as Amplifier
44
•Inthesaturationregion,theMOSFETactsasavoltage-controlled
currentsource:Changesinthegate-to-sourcevoltagev
GSgivesriseto
changesinthedraincurrenti
D.
•ThusthesaturatedMOSFET canbeusedtoimplementa
transconductanceamplifier

Mr. A. B. Shinde
MOSFET as Amplifier
45
Large-SignalOperation:
TheTransferCharacteristic:
•Groundedsourceterminaliscommonto
boththeinputandoutput.
•Here,changesinv
1(v
GS=v
1)giveriseto
changesini
D,weareusingaresistorR
Dto
obtainanoutputvoltagev
0
v
0= v
DS= V
DD–R
D.i
D
Inthiswaythetransconductanceamplifier
isconvertedintoavoltageamplifier.
•Todeterminethevoltagetransfer
characteristicoftheCSamplifier,wewill
assumev
jtobeintherangeof0toV
DD.
Basic structureof
common-sourceamplifier

Mr. A. B. Shinde
MOSFET as Amplifier
46
Large-SignalOperation-TheTransferCharacteristic:
Basic structureof
common-sourceamplifier
Transfer characteristic of the amplifier

Mr. A. B. Shinde
MOSFET as Amplifier
47
Large-SignalOperation:
TheTransferCharacteristic:
v
DS= V
DD–R
D.i
D
•Straightlineoni
D-v
DScharacteristics
curvesshowsthei
D-v
DSrelationship.
•Sincev
GS=v
1,forv
1<V
tthetransistor
willbecutoff,i
Dwillbezero,andv
0=
v
DS=V
DD(pointA).
•AsV
iexceedsV
tthetransistorturnson,
i
Dincreases,andv
0decreases.
•Thiscorrespondstopointsalongthe
segmentoftheloadlinefromAtoB.
•Wehaveidentifiedaparticularpointin
thisregionofoperationandlabeledit
Q.ItisobtainedforV
GS=V
IQandhas
thecoordinatesV
0Q=V
DSQandI
DQ.
Transfer characteristic
of the amplifier

Mr. A. B. Shinde
MOSFET as Amplifier
48
Large-SignalOperation:
TheTransferCharacteristic:
•Saturation-regionoperationcontinues
untilv
0decreasesbelowV
t.
•Atthispoint,v
DS=v
GS-V
Dandthe
MOSFETentersitstrioderegion.
•ThisisreferstopointBingraph.
PointBisdefinedbyv
0B=v
1B–V
t.
•ForV
i>V
IB,thetransistorisdriven
deeperintothetrioderegion.
•Thecharacteristiccurvesinthetriode
regionarebunchedtogether,theoutput
voltagedecreasesslowlytowardszero.
•Herewehaveidentifiedaparticular
operatingpointCobtainedforv
1=V
DD.
•ThecorrespondingoutputvoltageV
OCwill
usuallybeverysmall. Transfer characteristic
of the amplifier

Mr. A. B. Shinde
MOSFET as Amplifier
49
Large-SignalOperation-TheTransferCharacteristic:
Basic structureof
common-sourceamplifier
TransferCharacteristics

Mr. A. B. Shinde
MOSFET as Amplifier
50
Large-SignalOperation:
TheTransferCharacteristic:
PointCobtainedforv
i=V
DD.
Thecorrespondingoutputvoltage
V
OCwillusuallybeverysmall.
Thispoint-by-pointdeterminationof
thetransfercharacteristicresultsin
thetransfercurveshowninfigure.
Observethatwehavedelineated
itsthreedistinctsegments,each
correspondingtooneofthethree
regionsofoperationofMOSFET
Q
1.
TransferCharacteristics

Mr. A. B. Shinde
MOSFET as Amplifier
51
MOSFETasaSwitch:
•WhentheMOSFETisusedasaswitch,itisoperatedattheextreme
pointsofthetransfercurve.
•Thedeviceisturnedoffbykeeping,v<V
t.Here,v
0=V
DD.
•TheswitchisturnedonbyapplyingavoltageclosetoV
DD.Here,v
0is
verysmall.
•Thecommon-sourceMOScircuitcanbeusedasalogicinverterwith
the"low"voltagelevelcloseto0Vandthe"high"levelclosetoV
DD.

Mr. A. B. Shinde
MOSFET as Amplifier
52
MOSFETasaSwitch:
OperationasaLinearAmplifier
•TooperatetheMOSFETasanamplifier,saturation-modeismaintained.
•Thedeviceisbiasedatasomewhereneartothemiddleofthetransfer
curve.Thevoltagesignaltobeamplifiedv
tisthensuperimposedonthe
dcvoltageV
IQ.
•Bykeepingv
tsufficientlysmalltorestrictoperationtoanalmostlinear
segmentofthetransfercurve,theresultingoutputvoltagesignalv
0will
beproportionaltov
t.
•Thatis,theamplifierwillbeverynearlylinear,andv
Qwillhavethesame
waveformasv
texceptthatitwillbelargerbyafactorequaltothe
voltagegainoftheamplifieratQ.

Mr. A. B. Shinde
MOSFET as Amplifier
53
MOSFETasaSwitch:
OperationasaLinearAmplifier
Thusthevoltagegainisequaltotheslopeofthetransfercurveatthe
biaspointQ.
Theslopeisnegative,hencethebasicCSamplifierisinverting.
Iftheamplitudeoftheinputsignalv,theoutputsignalwillbecome
distortedsinceoperationwillnolongerberestrictedtoanalmostlinear
segmentofthetransferCurve.

Mr. A. B. Shinde
MOSFET as Amplifier
54
MOSFETasaSwitch:
AnalyticalExpressionsforthe
TransferCharacteristic:
•Fromthei-vrelationshipswecansee
that,theMOSFEToperatesinthree
regions—cutoff,saturation,and
triode.
•Cutoff–RegionSegment,XA:
Here,v
i<V
t,andv
0=V
DD.
•Saturation–RegionSegment,A
QB:
Here,v
i,≥V
tand
v
0≥v
i-V
t
•Triode-RegionSegment,BC:
Here,v
i≥V
tandv
0≤v
i–V
t
Transfer characteristic
of the amplifier

Single Stage MOS Amplifier

Mr. A. B. Shinde
Single Stage MOS Amplifier
56
•TheBasicStructure:
•Figureshowsthebasiccircuittoimplement
thevariousconfigurationsofdiscrete-circuit
MOSamplifiers.
•Duetoeffectivenessandsimplicityconstant-
currentbiasingtechniqueisusedforbiasing
theMOStransistor.
•Figureindicatesthedccurrentandthedc
voltagesresultingatvariousnodes.

Mr. A. B. Shinde
Single Stage MOS Amplifier
57
CharacterizingAmplifiers:
1.Theamplifieriswithasignalsourcehavinganopen-circuitvoltagev
sig
andaninternalresistanceR
sig.Thesearetheparametersofanactual
signalsource.Similarly,R
Lisanloadresistance.
2.ParametersR
i,R
0,A
vs,A
is,andG
mpertaintotheamplifierproper;thatis,
theydonotdependonthevaluesofR
sigandR
L.Bycontrast,R
in,R
out,
A
v,A
i,G
v0,andG
vmaydependononeorbothofR
sigandR
L.
3.Asmentionedabove,fornonunilateralamplifiers,R
inmaydependonR
L,
andR
outmaydependonR
sig.Nosuchdependenciesexistforunilateral
amplifiers,forwhichR
in=R
iandR
out=R
0.
4.Theloadingoftheamplifieronthesignalsourceisdeterminedbythe
inputresistanceR
in.ThevalueofR
indeterminesthecurrentthatthe
amplifierdrawsfromthesignalsource.Italsodeterminestheproportion
ofthesignalv
sigthatappearsattheinputoftheamplifier.

Mr. A. B. Shinde
Single Stage MOS Amplifier
58
•CharacterizingAmplifiers:
•Figureshowsanamplifierfedwithasignalsourcehavinganopen-
circuitvoltagev
sigandaninternalresistanceR
sig.
•Thesecanbetheparametersofanactualsignalsource,
•TheamplifierisshownwithaloadresistanceR
Lconnectedtotheoutput
terminal.
•Here,R
Lcanbeanactualloadresistanceortheinputresistanceofa
succeedingamplifierstageinacascadeamplifier.

Mr. A. B. Shinde
Single Stage MOS Amplifier
59
•CharacterizingAmplifiers:
•Figureshowstheamplifiercircuitwiththeamplifierblockreplacedbyits
equivalent-circuitmodel.
•TheinputresistanceR
inrepresentstheloadingeffectoftheamplifier
inputonthesignalsource.
R
inandR
sigformsavoltagedividerthatreducesv
sigtothevaluev
i

Mr. A. B. Shinde
Single Stage MOS Amplifier
60
•CharacterizingAmplifiers:
•Thesecondparameterincharacterizingamplifierperformanceisthe
open-circuitvoltagegainA
vo,definedas
ThelastparameteristheoutputresistanceR
o.Fromfigure,R
oisthe
resistanceseenlookingbackintotheamplifieroutputterminalwithv
iset
tozero.
AsR
oisdeterminedwithv
i=0,thevalueofR
odoesnotdependonR
sig.

Mr. A. B. Shinde
Single Stage MOS Amplifier
61
•CharacterizingAmplifiers:
Output voltage v
o
Voltage gain of the amplifier, A
v
Overall voltage gain, G
v

Mr. A. B. Shinde
Single Stage MOS Amplifier
62

Mr. A. B. Shinde
Single Stage MOS Amplifier
63
CSAmplifier:
•Figureshowsacommon-source(CS)amplifierfedwithasignalsource
v
sighavingasourceresistanceR
sig.
•AnalyzethiscircuittodetermineR
in,A
vo,andR
o.Here,assumeR
Dis
partoftheamplifier;thusifaloadresistanceR
Lisconnectedtothe
amplifieroutput,R
LappearsinparallelwithR
D.Insuchacase,wewish
todetermineA
vandG
vaswell.
•ReplacingtheMOSFETwithitshybrid-πmodel(withoutr
o),weobtain
theCSamplifierequivalentcircuitasshowninsecondfigure.

Mr. A. B. Shinde
Single Stage MOS Amplifier
64
CSAmplifier:

MOSFET Internal Capacitances

Mr. A. B. Shinde
MOSFET Internal Capacitances
66
•Various internal
capacitances,areshown
forn-channelMOSFET
operating in the
saturationregion.
•Therearefourinternal
capacitances:
•C
gsandC
gd,resultfrom
the gate-capacitance
effect;
•C
sbandC
db,arethe
depletioncapacitancesof
thepnjunctionsformed
bythesourceregionand
thesubstrate,andthe
drainregionandthe
substrate,respectively.

Mr. A. B. Shinde
MOSFET Internal Capacitances
67
•Thepolysilicongateformsaparallel-platecapacitorwiththechannel
region,whereoxidelayerworksasdielectric.
•Thegate(oroxide)capacitanceperunitgateareaisdenotedC
ox.When
thechannelistaperedandpinchedoff,thegatecapacitanceisgivenby
2/3WLC
ox.
•Therearetwoothersmallcapacitancesresultingfromtheoverlapofthe
gatewiththesourceregion(orsourcediffusion)andthedrainregion(or
draindiffusion).
•EachoftheseoverlapshasalengthL
ovandthustheresultingoverlap
capacitancesC
ovaregivenby
Typically,L
ov=0.05to0.1L.
Wecannowexpressthegate-to-sourcecapacitanceC
gsas

Mr. A. B. Shinde
MOSFET Internal Capacitances
68
•Forthegate-to-draincapacitance,wenotethatthechannelpinch-offat
thedrainendcausesC
gdtoconsistentirelyoftheoverlapcomponent
C
ov,
Thedepletion-layercapacitancesofthetworeverse-biasedpnjunctions
formedbetweeneachofthesourceandthedraindiffusionsandthep-
typesubstrate.
Thus,forthesourcediffusion,wehavethesource-bodycapacitance,
C
sb,
whereC
sb0isthevalueofC
sbatzerobody-sourcebias,V
SBisthe
magnitudeofthereverse-biasvoltage,andV
0isthejunctionbuilt-in
voltage(0.6Vto0.8V).

Mr. A. B. Shinde
MOSFET Internal Capacitances
69
•Similarly,forthedraindiffusion,wehavethedrain-bodycapacitance
C
db,
whereC
db0isthecapacitancevalueatzeroreverse-biasvoltageand
V
DBisthemagnitudeofthisreverse-biasvoltage.Notethatwehave
assumedthatforbothjunctions,thegradingcoefficientm=1/2.
Problem:Forann-channelMOSFETwitht
ox=10nm,L=1.0μm,
W=10μm,L
ov=0.05μm,C
sb0=C
db0=10fF,V
0=0.6V,V
SB=1Vand
V
DS=2V.Calculatethefollowingcapacitanceswhenthetransistoris
operatinginsaturation:C
ox,C
ov,C
gs,C
gd,C
sb,andC
db.
Ans: C
ox = 3.45 fF/μm
2
; C
ov= 1.72 fF; C
gs= 24.7 fF;
C
gd= 1.72 fF; C
sb= 6.1 fF; C
db= 4.1 fF

MOSFET High Frequency Model

Mr. A. B. Shinde
MOSFET High Frequency Model
71
•Figureshowsthesmall-signalmodeloftheMOSFET,includingthefour
capacitancesC
gs,C
gd,C
sb,andC
db.
•Thismodelisusedtopredictthehigh-frequencyresponseofMOSFET
amplifiers.
High-frequency, equivalent-circuit model for the MOSFET

Mr. A. B. Shinde
MOSFET High Frequency Model
72
•Whenthesourceisconnectedtothebody,themodelsimplifies
considerably,asshowninfigure.
•Inthismodel,C
gd,althoughsmall,playsasignificantroleindetermining
thehigh-frequencyresponseofamplifiersandthusmustbekeptinthe
model.
The equivalent circuit for source is connected to the substrate

Mr. A. B. Shinde
MOSFET High Frequency Model
73
•CapacitanceC
db,canusuallybeneglected,resultinginsignificant
simplificationofmanualanalysis.
•Theresultingcircuitisshowninfigure.
Theequivalent-circuitmodelwithC
dbneglected

Mr. A. B. Shinde
MOSFET High Frequency Model
74
•Figureshowsthehigh-frequencyTmodelinitssimplifiedform.
The simplified high-frequency T model

Mr. A. B. Shinde
MOSFET High Frequency Model
75
MOSFETHigh-FrequencyModel:Summary

Mr. A. B. Shinde
MOSFET High Frequency Model
76
•Problem:Calculatef
Tforthen-channelMOSFETwhosecapacitances
werefoundinExercise10.3.Assumeoperationat100μAandthat
k
n=160μA/V2.
•Ans.3.4GHz

Frequency Response of
CS Amplifier

Mr. A. B. Shinde
Frequency Response of CS Amplifier
78
Magnitude of the gain of a discrete-circuit MOS amplifier
versus frequency

Mr. A. B. Shinde
Frequency Response of CS Amplifier
79
•Figureshows,atlowerfrequencies,themagnitudeoftheamplifiergain
fallsoffduetocouplingandbypasscapacitors.Here,itisassumedthat
theirimpedancesweresmallenoughtoactasshortcircuits.
•Atmidbandfrequencies,asthefrequencyoftheinputsignalislowered,
thereactance1/jωCofeachofthesecapacitorsbecomessignificant,
thisresultsinadecreaseintheoverallvoltagegainoftheamplifier.
•Loweranduppercut-offfrequencyf
L&f
H,arethefrequenciesatwhich
thegaindropsby3dBbelowitsvalueinmidband.
•BW=f
H−f
L(discrete-circuitamplifiers)
•BW=f
H(integrated-circuitamplifiers)

CMOS Inverter

Mr. A. B. Shinde
CMOS Inverter
81
TheCMOSinverterisconstructedbyusing
nMOS&pMOStransistors.
AsthepMOStransistorpassesstrong1and
weak0,itisconnectedtothesupplyvoltage
V
DDand
nMOStransistorpassesstrong0andweak
1,itisconnectedtotheground.
CMOS inverter

Mr. A. B. Shinde
CMOS Inverter
82
CircuitOperation:
•Considerthetwoextremecases:
•Whenv
iisatlogic-0level,whichis0V,and
whenv
iisatlogic-1level,whichisV
DDvolts.
•Inbothcases,foreaseofexpositionwe
shallconsiderthen-channeldeviceQ
Ntobe
thedrivingtransistorandthep-channel
deviceQ
Ptobetheload.
•Ascircuitissymmetric,thisassumptionis
arbitrary,andthereversewouldleadto
identicalresults.

Mr. A. B. Shinde
CMOS Inverter
83
CircuitOperation:
Circuit with vi= V
DD
equivalent circuit

Mr. A. B. Shinde
CMOS Inverter
84
CircuitOperation:
Circuit with vi= 0 V
equivalent circuit

Mr. A. B. Shinde
CMOS Inverter
85
Voltage-
Transfer
Characteristic:

Mr. A. B. Shinde
Reference
86
•Microelectronic Circuits by Adel S. Sedra& Kenneth C. Smith, 7e

This presentation is published only for educational purpose
Frequency Response of CS Amplifier
87
ThankYou…!!!
[email protected]