Mossbauer spectroscopy - Principles and applications

132,902 views 81 slides Oct 05, 2013
Slide 1
Slide 1 of 81
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81

About This Presentation

Mossbauer spectroscopy an effective tool to study Mossbauer active nuclei.


Slide Content

MOSSBAUER
SPECTROSCOPY
V.SANTHANAM
DEPARTMENT OF CHEMISTRY
SCSVMV
PRINCIPLES AND APPLICATIONS

MOSSBAUER SPECTROSCOPY
•AlsoknownasNuclearGammaResonance
Spectroscopy.
•Inthismethodnucleusabsorbsangamma
rayphotonandundergoestransition.
•Firsttheconceptofϒphotonresonant
absorptionwassuggestedbyKuhn-1929
•FirstobservedbyMossbauerin1958
•AwardedNobelprizeforthiswork
2SANTHANAM SCSVMV

3SANTHANAM SCSVMV

Why it is difficult?
•Theonlysuitablesourceofϒradiationisthe
excitednucleiofthesameisotopeinthe
courseofradioactivedecay.
•Nowayoftuningtheenergyoftheemittedϒ
photon.
•Theenergiesinvolvedaremuchhigherand
intheorderofkeV.
•Recoileffect
4SANTHANAM SCSVMV

What is recoil?
•Wheneverahighenergyparticle/projectile
isreleasedfromabodyatrest,thereleasing
bodyfeelsaback-kicki.e.itispushed
backwards,whichiscalledrecoileffect.
•Thisistrueforabsorptionofhighenergy
particlesalso.
•Therecoilhappenstoconservethe
momentum.
5SANTHANAM SCSVMV

Recoil continued…
•Whenagaseousatomormoleculeemitsa
quantumofenergyE,theemittedquantum
willalwayshavethemomentumE/C
WhereC–isthevelocityoflight
•Toconservemomentumtheemitterrecoils
withmomentumPwhichisequalandin
oppositedirection.
P=M.V
R=-E/C
whereV
Rrecoilvelocity
-signshowsthatitsdirectionisopposite 6SANTHANAM SCSVMV

E
R= P
2
/2m = E
2
/2MC
2
= (E
t-E
R)
2
/2MC
2
≈ E
t/2MC
2
Since E
Ris small
•IfMincreasestherecoilenergycanbestill
lower.Sothesourceandtheabsorberare
fixedonalargerlatticetoincreasemass
7SANTHANAM SCSVMV

What happens because of recoil effect ?
9SANTHANAM SCSVMV

E
ϒ E
ϒ
E
R
E
R
E
tE
t
E.S E.S
G.S G.S
Emission [Eγ= E
t–E
R] Absorption [Eγ= E
t+ E
R]
10SANTHANAM SCSVMV

Why recording MB spectrum is difficult?
11SANTHANAM SCSVMV

What is there in X axis? λor νor E?
•Itisalreadyknownthat,forspectroscopic
techniqueweneedamonochromatic
radiation.
•Butgammaraysarecomingoutbecauseof
theenergydifferencebetweenthenuclear
levels.
•Wecannotalterit,tochangethegamma
photon’senergy.
•SoweuseDopplereffecttochangethe
energyofthephoton.
12SANTHANAM SCSVMV

Doppler Effect
13SANTHANAM SCSVMV

Tuning the energy by using Doppler Effect
Source moves towards absorber, νincreases
Source moves away from absorber, νdecreases 14SANTHANAM SCSVMV

Mössbauer Effect
•RecoillessNuclearResonanceAbsorptionof
gamma-Radiation.
•TheMössbauerEffecthasbeenobservedfor
about100nucleartransitionsinsome80
nuclidesinnearlyfiftyelements.
•Notallofthesetransitionsaresuitablefor
actualexploitation.
•valuablecontributionstothephysical,
chemical,biological-andearthsciences
15SANTHANAM SCSVMV

16SANTHANAM SCSVMV

Conditions for MB spectra
•Theenergyofnucleartransitionmustbe
largeenoughtogive,usefulϒrayphoton;
butnotlargeenoughtocauserecoileffect.
•Theenergyoftheϒrayphotonmustbein
therangeof10–150keV.
•Asubstantialamountofthenucleardecay
mustbewithϒrayemission.
17SANTHANAM SCSVMV

…..Conditions continued….
•Thelifetimeoftheexcitedstatemustbelong
enoughgiveareasonablybroademission
range.Since,extremelynarrowlinesarenot
useful(τmustbe001–100nS)
•Theexcitedstateoftheemittershouldbe
havingalong-livedprecursor,andeasyto
handle.
18SANTHANAM SCSVMV

…..Conditions continued….
•Thegroundstateoftheisotopeshouldbe
stable.Itsnaturalabundanceshouldbehigh
oratleasttheenrichmentofthatisotope
shouldbeeasy.
•Thecrosssectionofforabsorptionshouldbe
high.
19SANTHANAM SCSVMV

57
Co
270
days
57
Fe*
127.90 k.eV/ 91%
57
Fe* (99.3 nS)
14.41 k.eV
57
Fe
136.32 k.eV /
9 %
Why Fe is the most studied?
20SANTHANAM SCSVMV

Why Fe is the most studied?
•Theprecursorof
57
Feis
57
Cowhichdecaysto
57
Fe*withahalflifeof270days(highly
stableprecursor)
•9%of
57
Fe*decaystogroundstatedirectly
withemissionofϒphotonofenergy136.32
keV.
•91%of
57
Fe*decaystoanotherexcitedstate
withemissionof121.91keVenergy
21SANTHANAM SCSVMV

•The lower excited state is having a life time of 99.3nS
(more stable)
•This decays to ground state with emission of 14.41
keV.
•This transition satisfies all the conditions for MB
spectra except 2
nd
condition.
•But it is compensated by larger absorption cross
section.
•Other elements that can be studied-are
119
Sn,
121
Sb,
125
Te,
129
I,
129
Xe and
197
Au
22SANTHANAM SCSVMV

Recording the MB spectrum
•Usuallythestandardemitterisusedasthe
source.
•Sampleunderinvestigationistheabsorber.
•Boththesampleandabsorberareembedded
onacrystallatticetominimizetherecoil
effect.
23SANTHANAM SCSVMV

INSTRUMENTATION
24SANTHANAM SCSVMV

•Identicalsourceandabsorbermaterial;maximum
overlapoccursatzeroDopplervelocity.
•Thesourcefor
57
Fespectroscopyiscommercially
available
57
Co/Rh,ismountedontheshaftofa
vibrator.
•sourceisgenerallykeptatroomtemperature.
•Absorber(sampleunderstudy)maybecooled
downtoliquidnitrogenorliquidhelium
temperaturesinacryostat,orforcontrolledheating
inanoven.
25SANTHANAM SCSVMV

•γ-raysaredetectedbyascintillationcounter,gas
proportionalcounterorasemi-conductordetector.
•Aconstantfrequencyclocksynchronisesavoltage
waveformwhichservesasareferencesignaltothe
servo-amplifiercontrollingtheelectro-mechanical
vibrator.
26SANTHANAM SCSVMV

•Thedifferencebetweenthemonitoredsignaland
thereferencesignalisamplifiedanddrivesthe
vibratoratthesamefrequency(typically50s
-1
)as
thechanneladdressadvance.
•Eachchannelcorrespondstoacertainrelative
velocityandisheldopenforafixedtimeinterval
dependingonthefrequencyandnumberof
channelsused.
27SANTHANAM SCSVMV

•Theincomingγ-countsarecollectedintheir
correspondingchannelsduringthesequential
accessinge.g.50timespersecond,untilsatisfactory
resolutionisreached.
•Thecryostatcanbefurnishedwithasuper-
conductingsolenoidformeasuringthesampleinan
appliedmagneticfield.
•Itisalsopossibletomountapressurecellinsidethe
cryostatforstudyingthesamplepropertiesunder
pressure.
28SANTHANAM SCSVMV

ISOMER SHIFT / CENTRE SHIFT / CHEMICAL SHIFT
•TheE
tvalueisaffectedbytheinteraction
betweenthenucleusandthee
-
spresent
aroundit.
•Thisarisesbecauseofthedifferentsizesof
nucleusingroundandexcitedstates.
•Thechangeinnuclearradiuswhengoing
fromg.stoe.sisΔR
•Zistheatomicnumber
29SANTHANAM SCSVMV

Isomer shift
•The change in electrostatic energy on decay is
given by (chemical shift / Isomer shift)
δ= (ε
0/5) (Ze
2
R
2
)(ΔR/R)[|ψ
s(abs)|
2
-|ψ
s(source)|
2
]
where
ε
0 –Permittivity of free space
Z -atomic number of the nucleus
e -electronic charge
ψ
s(abs) -s orbital wave function of absorber
ψ
s(source)-s orbital wave function of source
30SANTHANAM SCSVMV

31SANTHANAM SCSVMV

•Sinceselectronwavefunctionshavetheir
maximaatthenucleus,selectrondensity
affectstheisomershifttoagreatextent.
•Butchangesinp&dorbitaloccupancies
affecttheselectronthroughscreeninghence
haveasmallereffectonisomershift.
•WhenΔR/Rispositivetheisomershiftisalso
positiveandnegativeΔR/Rreflectedas
negativeshift
32SANTHANAM SCSVMV

•Isomershiftisrelatedtotheoxidationstate
ofthemetal.
•In
119
SnMBspectraSn(II)showsapositive
shift(ΔR/R)w.r.toSnwhereasforSn(IV)itis
negative
Species configuration ΔR/R δ
Sn(IV) 5s
0
5p
0
-ive -ive
Sn 5s
2
5p
2
0 0
Sn(II) 5S
2
5p
0
+ive +ive
s -electron density decreased so
negative shift
s -electron density increased –p screening
not present, so positive shift
33

•In
119
Sncompounds,theshiftvaluesdepend
ontheligandspresentandthecoordination
numberoftin.
•Theisomershiftvaluesareusefulin
characterizingtinderivatives.
•ManySncompoundsappeartocontainSn(II)
fromtheformulaebutonanalyzingwithMB
spectraSn(IV)ispresentinthem.
34SANTHANAM SCSVMV

•Manyofthemarepolymericandcontain
Sn(IV).
•GenerallySn(II)compoundsshowshift>than
2.1mmS
-1
andSn(IV)showshift<2.1mmS
-1
(WithrelativetoSnO
2)
•Thepointofchangeoverisadisputebut
shiftslessthan2areforSn(IV)andabove2.5
areclearlyforSn(II)
35SANTHANAM SCSVMV

Organotin compounds
•Theisomershiftof(SnPh
2)
nis1.5mm/S
clearlyshowingthepresenceofSn(IV).
•AsimilarformulaSn(C
5H
3)
2ishavinga
monomericstructureinthesolidstateand
showsashiftof3.74mm/S.
36SANTHANAM SCSVMV

Chemical shift values for Fe compounds
•Feisomershiftcannotbeusedfor
determiningtheO.SofFeinamolecule.
•FeO.Sfrom0to4,oftendifferinunitcharge
only.
•Theelectronsinvolvedarefromdorbital.So
effectontheselectronsissmaller.
•Varyingspinstates(whichdependsonthe
ligandspresent)alsoaffecttheshiftvalue.
37SANTHANAM SCSVMV

•Anywaysomeusefulcorrelationshadbeen
drawn.
•Fe-porphyrincomplexesareveryimportant
biologically.
•Fecanbepresentin+2or+3stateinthem.
•Thecomplexescanbeeasilyreduced.The
electronmaybetotheFeortotheligand.In
thatambiguouscaseMBspectraisusefulin
determiningtheO.S
38SANTHANAM SCSVMV

•EventhoughassignmentofO.Sisoftenpossible,in
somecaseslike
197
Aumanyoxidationstatesshow
shiftvaluesconsiderablyoverlapping.
•Inthatcase,MBspectrumcanonlybeusedasa
supportingevidenceandcannotbeusedfor
ascertainingtheoxidationstate.
•Inaddition,theisomershiftsarewithrelativetoa
standardonly.Differentstudieshaveuseddifferent
standards.Soitisimportanttomentionwhich
standardwasused.For
57
Fe–[Fe(CN)
5NO],
119
Sn-
SnO
2
39SANTHANAM SCSVMV

Electric Quadruple Interactions
•Nucleiinstateswithanangularmomentum
quantumnumberI>1/2haveanon-sphericalcharge
distribution.Thisproducesanuclearquadruple
moment.
•Inthepresenceofanasymmetricalelectricfield
(producedbyanasymmetricelectroniccharge
distributionorligandarrangement)thissplitsthe
nuclearenergylevels.
•Thechargedistributionischaracterizedbyasingle
quantitycalledtheElectricFieldGradient(EFG).
40SANTHANAM SCSVMV

SPHERICAL Q IS 0 PROLATE Q IS +IVEOBLATE Q IS -IVE
41SANTHANAM SCSVMV

Oblate and Prolate nuclei
42SANTHANAM SCSVMV

•In the case of an isotope with a I=3/2 excited
state, such as
57
Fe or
119
Sn, the excited state
is split into two sub states m
I=±1/2 and
m
I=±3/2.
•This gives a two line spectrum or 'doublet'.
•The magnitude of splitting, Delta, is related
to the nuclear quadrupole moment, Q, and
the principle component of the EFG, V
zz, by
the relation Δ=eQV
zz/2
43SANTHANAM SCSVMV

Quadruple Splitting for
57
Fe and
119
Sn
44SANTHANAM SCSVMV

5/2
3/2
1/2
7/2
5/2
3/2
1/2
I
e= 5/2
I
g= 7/2
Selection Rule
for MB spectra
m
I= 0,1
45SANTHANAM SCSVMV

46SANTHANAM SCSVMV

Informations from quadruple splitting
•Appearanceofquadruplesplittingshowsthe
presenceofefgatthenucleus.
•Theefgmaybecreatedbytheligandfieldor
bytheelectrondistributionaroungthe
nucleus.
•Singlecrystalorapplicationofmagneticfield
givesmoreinformation.
•Ifanucleuswithsymmetricelectron
distributionisinanO
hfield,efgisnot
expected.
47SANTHANAM SCSVMV

Stereochemical activity of lone pair
•Consider Te(IV) compounds with six ligands
•If the lone pair of electron of Te is
stereochemically active , it will occupy one
vertex of a pentagonal bipyramide(pbp)
•This will create an efg at the nucleus,
resulting in q.s
•But no q.s in these class of compounds.
•So the lone pair is stereochemically inactive
•It occupies the 5s orbital
48SANTHANAM SCSVMV

•StructuresoftheTeX
4Y
2-
hadnotbeen
crystallographicallystudied.
•TheMBspectraofthosespeciesshoenoq.S,
butthisisnotaconclusiveevidencefor
absenceofefgatnucleus.
•Theefgmaynotbeenoughtocauseq.s.
•ButinCsIF6substantialq.sshowsthe
stereochemicalactivityoflonepair.
49SANTHANAM SCSVMV

Magnetic interactions
•:Inthepresenceofamagneticfieldthe
nuclearspinmomentexperiencesadipolar
interactionwiththemagneticfieldieZeeman
splitting
•Therearemanysourcesofmagneticfields
thatcanbeexperiencedbythenucleus.
•Thetotaleffectivemagneticfieldatthe
nucleus,B
effisgivenby
B
eff= (B
contact+ B
orbital+ B
dipolar) + B
applied
50SANTHANAM SCSVMV

•Thefirstthreetermsbeingduetotheatom's
ownpartiallyfilledelectronshells.
•B
contactisduetothespinonthoseelectrons
polarisingthespindensityatthenucleus
•B
orbitalisduetotheorbitalmomentonthose
electrons,andB
dipolaristhedipolarfielddue
tothespinofthoseelectrons.
Energy of the nuclear levels E
m= -gμ
NBm
I
51SANTHANAM SCSVMV

•Thismagneticfieldsplitsnuclearlevelswitha
spinofIinto(2I+1)substates.
•Transitionsbetweentheexcitedstateand
groundstatecanonlyoccurwhere
m
Ichangesby0or1.
•Thisgivessixpossibletransitionsfora3/2to
1/2transition,givingasextet,withtheline
spacingbeingproportionaltoB
eff.
52SANTHANAM SCSVMV

Effect of magnetic field on
57
Fe
53SANTHANAM SCSVMV

•Thelinepositionsarerelatedtothesplitting
oftheenergylevels,butthe
lineintensitiesarerelatedtotheangle
betweentheMössbauergamma-rayandthe
nuclearspinmoment.
•Theouter,middleandinnerlineintensities
arerelatedby:
3:(4sin
2
θ)/(1+cos
2
θ):1
54SANTHANAM SCSVMV

•Outerandinnerlinesarealwaysinthesame
proportion.
•Themiddlelinescanvaryinrelativeintensity
between0and4dependingupontheangle
thenuclearspinmomentsmaketothe
gamma-ray.
•Inpolycrystallinesampleswithnoapplied
fieldthisvalueaveragesto2,
•Butinsinglecrystalsorunderappliedfields
therelativelineintensitiescangive
informationaboutmomentorientationand
magneticordering.
55SANTHANAM SCSVMV

APPLICATIONS
OF
MOSSBAUER SPECTRA
56SANTHANAM SCSVMV

Spectra of spin free Fe(II) –
FeSO
4.7H
2O
57SANTHANAM SCSVMV

•Fromthecrystallographicdataitwasinitially
concludedthatFeSO
4.7H
2Oishavinga
perfectO
hsymmetry,withsixH
2Ooneach
vertex.
•ButtheMBspectrumrecordedshoweda
largequadruplesplitting,whichisnot
possibleinaregularO
hsymmetry.(for
perfectO
hfieldefgiszero)
58SANTHANAM SCSVMV

•Fe(II)isad
6
system.
•InweakfieldcreatedbyH
2O,anorbitally
degeneratesystemresults.
•ThisundergoesJ-Tdistortion(Z
in)toremove
thedegeneracyandformsatetragonalfield.
•Thiscreatesanefgatthenucleusandhence
quadruplesplitting.
•ThestructureassignedisandistortedO
hwith
allangles90
o
andx≠y≠z
59SANTHANAM SCSVMV

60SANTHANAM SCSVMV

Prussian Blue and Turnbull’s blue
•Prussianblueisadarkbluepigmentwiththe
idealizedformulaFe
7(CN)
18.itispreparedby
addingaferricsalttoferrocyanide
Fe
3+
+[Fe
2+
(CN)
6]
4-
Fe
3+
4[Fe
2+
(CN)
6]
3
•Turnbull'sblueisthesamesubstancebutis
madefromdifferentreagents,i.e.addition
ferroussaltstoferricyanide.
Fe
2+
+[Fe
3+
(CN)
6]
3-
Fe
3+
4[Fe
2+
(CN)
6]
3
•Itslightlydifferentcolorstemsfromdifferent
impurities.
61SANTHANAM SCSVMV

•Foralongtimeonehadconsideredthemas
chemicallydifferentcompounds.
•PrussianBluewith[Fe
II
(CN)
6]
4-
anionsand
Turnbull’sBluewith[Fe
III
(CN)
6]
3-
anions,
accordingtothedifferentwayofpreparing
them.
•However,theMössbauerspectrarecordedby
Flucketal.,werenearlyidenticalforbothPB
andTBshowingonlythepresenceof
[Fe
II
(CN)
6]
4-
andFe
3+
inthehighspinstate.
62SANTHANAM SCSVMV

•Thiscouldbeconfirmedbyuseof
K
4[Fe
II
(CN)
6]andK
3[Fe
III
(CN)
6]asreference
compounds.
•ImmediatelyafteraddingasolutionofFe
2+
toasolutionof[Fe
III
(CN)
6]
3-
arapidelectron
transfertakesplacefromFe
2+
totheanion
[Fe
III
(CN)
6]
3-
withsubsequentprecipitationof
thesamematerial.
•AsingletforFe(II)andaquadrupledoublet
forFe(III)werewhichconfirmedPrussian
blueandTurnbull’sblueareidentical
63SANTHANAM SCSVMV

Fe(II) –L.S –efg= 0-
Q.S not present
Fe(III) –L.S –efg≠ 0
Q.S present
Fe(II) –H.S –efg≠ 0
Q.S present
Fe(III) –H.S –efg= 0
Q.S not present
64SANTHANAM SCSVMV

•TheFe(II)centers,whicharelowspin,are
surroundedbysixcarbonligandsin
anoctahedralconfiguration.
•TheFe(III)centers,whicharehighspin,are
octahedrallysurroundedonaverageby4.5
nitrogenatomsand1.5oxygenatoms(the
oxygenfromthesixcoordinatedwater
molecules).
•ThisintroducesanefgatFe(III)nucleusand
henceQ.S
65SANTHANAM SCSVMV

•.
66SANTHANAM SCSVMV

Sodium nitroprusside –Na
2[Fe(CN)
5(NO)]
•TheO.SofFeinnitroprussidewasamatterof
controversyforalongtime.
•InitiallyitwasassumedthatitcontainedFe(II)
andNO
+
sinceitwasdiamagnetic.[Fe(II)-d
6
;
Fe(III)–d
5
]
•ButtheMBspectrumofthesampleshoweda
doubletwithδ=-0.165mm/S
•ThisvalueistoonegativeforaFe(II)complex.
67SANTHANAM SCSVMV

68SANTHANAM SCSVMV

•ThissuggeststhattheFemaybeinFe(IV)
state.
•ThemagnetismandMBspectrumarein
consistentwiththestructurewhichhasan
extensiveπ-bondingwith
+
NOligand.
•Thet
2gorbitalsofFeandthep-orbitalofN
presentin
+
NOcontainingtheodde-,toform
aπ-bond
69SANTHANAM SCSVMV

•TheFe(II)istransferringthee
-
sformfilledt
2g
leveltothevacantπ-antibondingorbitalof
NO.
•ThismakestheshiftvaluetoapproachFe(IV)
values.
•Nowbecauseofthistheshieldingofs-e
-
by
thede
-
sdecreasesandhencetheshift
becomesmore.
•ThisissupportedbythedecreaseinN-O
stretchingfrequencyinIR,sincetheanti
bondinglevelisfilled.
70SANTHANAM SCSVMV

•K
4[Fe(CN)
6]isa3d
6
LScomplexwithO
h
symmetry,whereallsixelectronsare
accommodatedinthethreet
2gorbitals.
•Bothcontributions(EFG)
valand(EFG)
lat
vanish;thereisnoquadrupolarinteraction.
•Na
2[Fe(CN)
5NO]2H
2OhasC
4vsymmetrywith
d-orbitalsplittingasshown.
71SANTHANAM SCSVMV

72SANTHANAM SCSVMV

•ItsLSbehaviorrequiresthatallsixelectrons
areaccommodatedinthelowestthree
orbitalsarisingfromthetetragonalsplitting
oftheformercubict2g(Oh)subgroup.
•(EFG)
valisstillzero,but(EFG)
lat≠0arisesfrom
theligandreplacementintheiron
coordinationsphere.
73SANTHANAM SCSVMV

•Theisomershiftdataforthepentacyano
complexesofiron(II)withadifferentsixthligand
X.
•Normalizingtheisomershiftstothatofthe
pentacyanonitrosylferratecomplexaszeropoint
•Theorderingexpressesthevaryingeffectsofd
π-
p
πbackdonationforthedifferentsixthligandX.
•Theisomershiftvaluesbecomemorepositive
on goingfromNO
+
toH
2O
74SANTHANAM SCSVMV

•d
π-p
πbackdonationdecreasescausingan
increasingd-electrondensityresidingnear
theironcentre.
•Strongershieldingofs-electronsbyd-
electrons,whichfinallycreateslowers-
electrondensityatthenucleus.
•ThenuclearfactorΔR/Risnegativefor
57
Fe
explainstheincreasinglypositiveisomershift
valuesinthegivensequencefromNO
+
to
H
2O 75SANTHANAM SCSVMV

76SANTHANAM SCSVMV

Ferredoxin
•Studyofferredoxin,aFe-Sprotein,which
assistsinin-vivoe
-
transferreactions
•Thetwo-ironcentresarenotequivalentin
thereducedform.
•TheoxidizedformwithtwoFe(III)-highspin
centrescanbedistinguishedfromthe
reducedformwithoneFe(III)-highspin
centreandoneFe(II)-highspincentreonlyby
usingMBspectrum
77SANTHANAM SCSVMV

78SANTHANAM SCSVMV

Study of thermal spin-cross over
•Manycoordinationcompoundspossessing
intermediateligandfieldstrengthsshow
thermalspincrossover.[i.e.HS<-->LS]
•[Fe(phen)2(NCS)2]undergoesthermalspin
transition.
•Themainresultisthatinthetemperature
region,wheretheMASspectrareflectthe
transitiontotheLSstate,theMESspectra
stillshowthetypicalHSsignalsarisingfrom
excitedligandfieldstates 79SANTHANAM SCSVMV

80SANTHANAM SCSVMV

81