mtl_gen_int_ppt_romberg.ppt 6 6 6

dimaseryanfahrezi 8 views 27 slides Feb 27, 2025
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

-


Slide Content

02/27/25 http://numericalmethods.eng.usf.edu 1
Romberg Rule of
Integration
Major: All Engineering Majors
Authors: Autar Kaw, Charlie Barker
http://numericalmethods.eng.usf.ed
u
Transforming Numerical Methods Education for STEM
Undergraduates

Romberg Rule of
Integration

http://numericalmethods.eng.usf.e
du

http://numericalmethods.eng.usf.edu3
Basis of Romberg Rule
Integration


b
a
dx)x(fI
The process of measuring
the area under a curve.
Where:
f(x) is the integrand
a= lower limit of integration
b= upper limit of integration
f(x)
a b
y
x

b
a
dx)x(f

http://numericalmethods.eng.usf.edu4
What is The Romberg Rule?
Romberg Integration is an extrapolation formula
of the Trapezoidal Rule for integration. It provides
a better approximation of the integral by reducing
the True Error.

http://numericalmethods.eng.usf.edu5
Error in Multiple Segment
Trapezoidal Rule
The true error in a multiple segment Trapezoidal
Rule with n segments for an integral
Is given by


b
a
dx)x(fI


n
f
n
ab
E
n
i
i
t





1
2
3
12
where for each i, is a point somewhere in the
domain , .
i

 iha,hia 1

http://numericalmethods.eng.usf.edu6
Error in Multiple Segment
Trapezoidal Rule
The term can be viewed as an 
n
f
n
i
i


1
approximate average value of in .xf b,a
This leads us to say that the true error, E
t

previously defined can be approximated as
2
1
n
E
t


http://numericalmethods.eng.usf.edu7
Error in Multiple Segment
Trapezoidal Rule
Table 1 shows the
results obtained for the
integral using multiple
segment Trapezoidal
rule for
n Value E
t
1 11868 807 7.296 ---
2 11266 205 1.854 5.343
3 11153 91.4 0.8265 1.019
4 11113 51.5 0.46550.3594
5 11094 33.0 0.29810.1669
6 11084 22.9 0.20700.09082
7 11078 16.8 0.15210.05482
8 11074 12.9 0.11650.03560
 














30
8
89
2100140000
140000
2000 dtt.
t
lnx
Table 1: Multiple Segment Trapezoidal Rule Values
%
t
 %
a

http://numericalmethods.eng.usf.edu8
Error in Multiple Segment
Trapezoidal Rule
The true error gets approximately quartered
as the number of segments is doubled. This
information is used to get a better
approximation of the integral, and is the basis
of Richardson’s extrapolation.

http://numericalmethods.eng.usf.edu9
Richardson’s Extrapolation for
Trapezoidal Rule
The true error, in the n-segment Trapezoidal
rule is estimated as
t
E
2
n
C
E
t
where C is an approximate constant of
proportionality. Since
nt ITVE 
Where TV = true value and = approx. value
n
I

http://numericalmethods.eng.usf.edu10
Richardson’s Extrapolation for
Trapezoidal Rule
From the previous development, it can be
shown that

n
ITV
n
C
22
2

when the segment size is doubled and that
3
2
2
nn
n
II
ITV


which is Richardson’s Extrapolation.

http://numericalmethods.eng.usf.edu11
Example 1
The vertical distance covered by a rocket from 8 to
30 seconds is given by
 














30
8
89
2100140000
140000
2000 dtt.
t
lnx
a)Use Richardson’s rule to find the distance
covered.
Use the 2-segment and 4-segment Trapezoidal
rule results given in Table 1.
b) Find the true error, E
t
for part (a).
c) Find the absolute relative true error, for part
(a).
a

http://numericalmethods.eng.usf.edu12
Solution
a) mI11266
2 mI11113
4
Using Richardson’s extrapolation
formula for Trapezoidal rule
3
2
2
nn
n
II
ITV


and choosing n=2,
3
24
4
II
ITV


3
1126611113
11113


m11062

http://numericalmethods.eng.usf.edu13
Solution (cont.)
b)The exact value of the above integral is
 














30
8
89
2100140000
140000
2000 dtt.
t
lnx
m11061
Hence
ValueeApproximatValueTrueE
t 
1106211061
m1

http://numericalmethods.eng.usf.edu14
Solution (cont.)
c)The absolute relative true error twould then be
100
11061
1106211061



t
%.009040
Table 2 shows the Richardson’s extrapolation
results using 1, 2, 4, 8 segments. Results are
compared with those of Trapezoidal rule.

http://numericalmethods.eng.usf.edu15
Solution (cont.)
Table 2: The values obtained using Richardson’s
extrapolation formula for Trapezoidal rule for
 














30
8
89
2100140000
140000
2000 dtt.
t
lnx
n Trapezoidal
Rule
for Trapezoidal
Rule
Richardson’s
Extrapolation
for Richardson’s
Extrapolation
1
2
4
8
11868
11266
11113
11074
7.296
1.854
0.4655
0.1165
--
11065
11062
11061
--
0.03616
0.009041
0.0000
Table 2: Richardson’s Extrapolation Values
t

t

http://numericalmethods.eng.usf.edu16
Romberg Integration
Romberg integration is same as Richardson’s
extrapolation formula as given previously.
However, Romberg used a recursive algorithm for
the extrapolation. Recall
3
2
2
nn
n
II
ITV


This can alternately be written as

3
2
22
nn
nRn
II
II


14
12
2
2




nn
n
II
I

http://numericalmethods.eng.usf.edu17
Note that the variable TV is replaced by as the
value obtained using Richardson’s extrapolation formula.
Note also that the sign is replaced by = sign.

Rn
I
2

Romberg Integration
Hence the estimate of the true value now is

4
2 ChITV
Rn
Where Ch
4
is an approximation of the true
error.

http://numericalmethods.eng.usf.edu18
Romberg Integration
Determine another integral value with further
halving the step size (doubling the number of
segments),

3
24
44
nn
nRn
II
II


It follows from the two previous expressions
that the true value TV can be written as


15
24
4
RnRn
Rn
II
ITV



14
13
24
4




RnRn
n
II
I

http://numericalmethods.eng.usf.edu19
Romberg Integration
2
14
1
111
11 





 k,
II
II
k
j,kj,k
j,kj,k
The index k represents the order of
extrapolation.
k=1 represents the values obtained from the regular
Trapezoidal rule, k=2 represents values obtained using
the true estimate as O(h
2
). The index j represents the
more and less accurate estimate of the integral.
A general expression for Romberg integration can
be written as

http://numericalmethods.eng.usf.edu20
Example 2
The vertical distance covered by a rocket from
8t to30t seconds is given by
 














30
8
89
2100140000
140000
2000 dtt.
t
lnx
Use Romberg’s rule to find the distance covered.
Use the 1, 2, 4, and 8-segment Trapezoidal rule
results as given in the Table 1.

http://numericalmethods.eng.usf.edu21
Solution
From Table 1, the needed values from original
Trapezoidal rule are
11868
11

,
I 11266
21

,
I
11113
31

,
I
11074
41

,
I
where the above four values correspond to using 1,
2, 4 and 8 segment Trapezoidal rule, respectively.

http://numericalmethods.eng.usf.edu22
Solution (cont.)
To get the first order extrapolation values,
11065
3
1186811266
11266
3
1,12,1
2,11,2





II
II
Similarly,
11062
3
1126611113
11113
3
2,13,1
3,12,2





II
II
11061
3
1111311074
11074
3
3,14,1
4,13,2





II
II

http://numericalmethods.eng.usf.edu23
Solution (cont.)
For the second order extrapolation values,
11062
15
1106511062
11062
15
1,22,2
2,21,3





II
II
Similarly,
11061
15
1106211061
11061
15
2,23,2
3,22,3





II
II

http://numericalmethods.eng.usf.edu24
Solution (cont.)
For the third order extrapolation values,
63
1323
2314
,,
,,
II
II


63
1106211061
11061


m11061
Table 3 shows these increased correct values in a tree
graph.

http://numericalmethods.eng.usf.edu25
Solution (cont.)
11868
1126
11113
11074
11065
11062
11061
11062
11061
11061
1-segment
2-segment
4-segment
8-segment
First Order Second OrderThird Order
Table 3: Improved estimates of the integral value using Romberg Integration

Additional Resources
For all resources on this topic such as digital
audiovisual lectures, primers, textbook chapters,
multiple-choice tests, worksheets in MATLAB,
MATHEMATICA, MathCad and MAPLE, blogs, related
physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/romber
g_method.html

THE END
http://numericalmethods.eng.usf.edu
Tags