References 1. Bailar, J. C., & Gornik , H. L. (1997). Cancer undefeated. The New England Journal of Medicine, 336(22), 1569–1574. https://doi.org/10.1056/nejm199705293362206 2. Zugazagoitia , J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., & Paz-Ares, L. (2016). Current challenges in cancer treatment. Clinical Therapeutics, 38(7), https://doi.org/10.1016/j.clinthera.2016.03.026 1551–1566 . 3. Ali, S.; Li, J.; Pei, Y.; Khurram, R.; Rehman, K.u .; Rasool, A.B. State-of-the-Art Challenges and Perspectives in Multi-Organ Cancer Diagnosis via Deep Learning-Based Methods. Cancers 2021, 13, 5546. 4. C. Muñoz-Meza and Wilfrido Gómez. 2013. A feature selection methodology for breast ultrasound classification. In Proceedings of the 10th International Conference on Electrical Engineering, Computing Science, and Automatic Control (CCE’13). IEEE, Los Alamitos, CA. https://doi.org/10.1109/ICEEE.2013.6676056 [5] Xiao Zheng, Xie Faqiang , Shi Jianwei , and Niu Xiaolan Tang. 2020. Breast ultrasound image classification and seg mentation using convolutional neural networks. Advances in Multimedia Information Processing 2018 (2020), https://doi.org/10.1007/978-3-030-00764-5_19 200–211. [6] ALEXANDER Rakhlin , Alexey Shvets, Vladimir Iglovikov , and Alexandr A. Kalinin. 2018. Deep convolutional neural networks for breast cancer histology image analysis. arXiv:1802.00752. [7] Scotty Kwok. 2018. Multiclassaclassification ofabreast cancer in whole-slide images. In Proceedings of the 15th International Conference on Image Analysis and Recognition (ICIAR’18). IEEE, Los Alamitos, CA, 931–940. https://doi.org/10.1007/978-3-319 93000-8_106 [8] Yeeleng S. Vang, Zhen Chen, and Xiaohui Xie. 2018. Deep learning framework for multi-class breast cancer histology image classification. arXiv:1802.00931 [9] Yi Wang, Eun Jung Choi, Younhee Choi, Hao Zhang, Gong Yong Jin, and Seok-Bum Ko. 2020. Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning. Ultrasound in Medicine and Biology 2020 (May 2020), https://doi.org/10.1016/j.ultrasmedbio.2020.01.001 1