Multiple Linear Regressionnnnnnnnnnn.pptx

angelinjeba6 9 views 19 slides Mar 10, 2025
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

Multiple Linear Regressionnnnnnnnnnn.pptx


Slide Content

MULTIPLE LINEAR REGRESSION

SLR VS MLR SIMPLE LINEAR REGRESSION 🡪 ONE INDEPENDENT VARIABLE MULTIPLE LINEAR REGRESSION 🡪 MULTIPLE INDEPENDENT VARIABLE

USES OF MULTIPLE REGRESSION: First, it might be used to identify the strength of the effect that the independent variables have on a dependent variable. Multiple linear regression analysis helps us to understand how much will the dependent variable change when we change the independent variables.  Multiple linear regression analysis predicts trends and future values.

MULTIPLE LINEAR REGRESSION

MULTIPLE LINEAR REGRESSION

MULTIPLE LINEAR REGRESSION

DUMMY VARIABLE TRAP

P-VALUE

BUILDING A MODEL PART OF MODEL TRAINING AND VARIABLE SELECTION DON’T INCLUDE THE IRRELEVANT DATA OR THE DATA WHICH HAVE NO LINEARITY WITH THE DEPENDENT VARIABLE WHY BECAUSE

BUILDING A MODEL

METHODS-BUILDING MODEL

ALL-IN

BACKWARD ELIMINATION

FORWARD SELECTION

BIDIRECTIONAL ELIMINATION

Consider the following dataset with one response variable  y  and two predictor variables X 1  and X 2 :

Calculate X 1 2 , X 2 2 , X 1 y, X 2 y and X 1 X 2 .

Calculate b , b 1 , and b 2 . b 1  = [(194.875)(1162.5)  – (-200.375)(-953.5)]  / [(263.875) (194.875) – (-200.375) 2 ] =  3.148   b 2  = [(263.875)(-953.5)  – (-200.375)(1152.5)]  / [(263.875) (194.875) – (-200.375) 2 ] =  -1.656 b0= b 0  = 181.5 – 3.148(69.375) – (-1.656)(18.125) =  -6.867

Multiple Linear Regression Equation   ŷ = b  + b 1 *x 1  + b 2 *x 2 ŷ = -6.867 + 3.148x 1  – 1.656x 2 b  = -6.867 . When both predictor variables are equal to zero, the mean value for y is -6.867. b 1  = 3.148 . A one unit increase in x 1  is associated with a 3.148 unit increase in y, on average, assuming x 2  is held constant. b 2  = -1.656 . A one unit increase in x 2  is associated with a 1.656 unit decrease in y, on average, assuming x 1  is held constant.
Tags