Números inteiros relativos adição e subtração

PatriciaLavos 6,511 views 17 slides Oct 24, 2015
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

números inteiros relativos-adição e subtração


Slide Content

NÚMEROS INTEIROS RELATIVOS

INTRODUÇÃO:

Observe que, no conjunto dos números naturais, a operação de subtração nem
sempre é possível

exemplos:

a) 5 - 3 = 2 (possível: 2 é um número natural)
b) 9 - 9 = 0 ( possível: 0 é um número natural)
c) 3 - 5 = ? (impossível nos números naturais)

Para tonar sempre possível a subtração, foi criado o conjunto dos números inteiros
relativos,

-1, -2, -3..........

lê-se: menos um ou 1 negativo
lê-se: menos dois ou dois negativo
lê-se: menos três ou três negativo

Reunindo os números negativos, o zero e os números positivos, formamos o conjunto
dos numeros inteiros relativos, que será representado por Z.

Z = {.....-3, -2, -1, 0, +1, +2, +3,......}

Importante: os números inteiros positivos podem ser indicados sem o sinal de +.

exemplo

a) +7 = 7
b) +2 = 2
c) +13 = 13
d) +45 = 45

Sendo que o zero não é positivo nem negativo.
EXERCICIOS

1) Observe os números e diga:

-15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72

a) Quais os números inteiros negativos?

b) Quais são os números inteiros positivos?


2) Qual o número inteiro que não é nem positivo nem negativo?


3) Escreva a leitura dos seguintes números inteiros:

a) -8 =
b)+6 =
c) -10 =
d) +12 =
e) +75 =
f) -100 =

4) Quais das seguintes sentenças são verdadeiras?

a) +4 = 4 =
b) -6 = 6 =
c) -8 = 8 =
d) 54 = +54 =
e) 93 = -93 =


5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos
e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte
situação com números inteiros relativos:

a) 5° acima de zero =
b) 3° abaixo de zero =
c) 9°C abaixo de zero=
d) 15° acima de zero =
REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA

Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa
unidade de medida, assinalemos os pontos que correspondem aos números positivos e
à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem
aos números negativos.



_I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6

exercícios

1) Escreva os números inteiros:

a) compreendidos entre 1 e 7
b) compreendidos entre -3 e 3
c) compreendidos entre -4 e 2
d) compreendidos entre -2 e 4
e) compreendidos entre -5 e -1
f) compreendidos entre -6 e 0

2) Responda:

a) Qual é o sucessor de +8?
b) Qual é o sucessor de -6?
c) Qual é o sucessor de 0 ?
d) Qual é o antecessor de +8?
e) Qual é o antecessor de -6?
f) Qual é o antecessor de 0 ?

3) Escreva em Z o antecessor e o sucessor dos números:

a) +4
b) -4
c) 54
d) -68
e) -799
f) +1000
ADIÇÃO E SUBTRAÇÃO COM NÚMEROS INTEIROS
ADIÇÃO

1) Adição de números positivos


A soma de dois números positivos é um número positivo.

EXEMPLO

a) (+2) + (+5) = +7
b) (+1) + (+4) = +5
c) (+6) + (+3) = +9

Simplificando a maneira de escrever
a) +2 +5 = +7
b) +1 + 4 = +5
c) +6 + 3 = +9

Observe que escrevemos a soma dos números inteiros sem colocar o sinal + da adição
e eliminamos os parênteses das parcelas.

2) Adição de números negativos


A soma de dois números negativos é um número negativo

Exemplo

a) (-2) + (-3) = -5
b) (-1) + (-1) = -2
c) (-7) + (-2) = -9

Simplificando a maneira de escrever

a) -2 - 3 = -5
b) -1 -1 = -2
c) -7 - 2 = -9

Observe que podemos simplificar a maneira de escrever deixando de colocar o sinal
de + na operação e eliminando os parênteses das parcelas.

EXERCÍCIOS

1) Calcule

a) +5 + 3 =
b) +1 + 4 =
c) -4 - 2 =
d) -3 - 1 =
e) +6 + 9 =
f) +10 + 7 =
g) -8 -12 =
h) -4 -15 =
i) -10 - 15 =
j) +5 +18 =
l) -31 - 18 =
m) +20 +40 =
n) -60 - 30 =
o) +75 +15 =
p) -50 -50 =

2) Calcule:

a) (+3) + (+2) =
b) (+5) + (+1) =
c) (+7) + ( +5) =
d) (+2) + (+8) =
e) (+9) + (+4) =
f) (+6) + (+5) =
g) (-3) + (-2) =
h) (-5) + (-1) =
i) (-7) + (-5) =
j) (-4) + (-7) =
l) (-8) + ( -6) =
m) (-5) + ( -6) =

3) Calcule:

a) ( -22) + ( -19) =
b) (+32) + ( +14) =
c) (-25) + (-25) =
d) (-94) + (-18) =
e) (+105) + (+105) =
f) (-280) + (-509) =
g) (-321) + (-30) =
h) (+200) + (+137) =
3) Adição de números com sinais diferentes

A soma de dois números inteiros de sinais diferentes é obtida subtraindo-se os
valores absolutos, dando-se o sinal do número que tiver maior valor absoluto.

exemplos

a) (+6) + ( -1) = +5
b) (+2) + (-5) = -3
c) (-10) + ( +3) = -7

simplificando a maneira de escrever

a) +6 - 1 = +5
b) +2 - 5 = -3
c) -10 + 3 = -7

Note que o resultado da adição tem o mesmo sinal que o número de maior
valor absoluto

Observação:

Quando as parcelas são números opostos, a soma é igual a zero.

Exemplo

a) (+3) + (-3) = 0
b) (-8) + (+8) = 0
c) (+1) + (-1) = 0

simplificando a maneira de escrever

a) +3 - 3 = 0
b) -8 + 8 = 0
c) +1 - 1 = 0

4) Um dos números dados é zero

Quando um dos números é zero , a soma é igual ao outro número.

exemplo

a) (+5) +0 = +5
b) 0 + (-3) = -3
c) (-7) + 0 = -7

Simplificando a maneira de escrever

a) +5 + 0 = +5
b) 0 - 3 = -3
c) -7 + 0 = -7

exercícios
1) Calcule:
a) +1 - 6 =
b) -9 + 4 =
c) -3 + 6 =
d) -8 + 3 =
e) -9 + 11 =
f) +15 - 6 =
g) -2 + 14 =
h) +13 -1 =
i) +23 -17 =
j) -14 + 21 =
l) +28 -11 =
m) -31 + 30 =

2) Calcule:

a) (+9) + (-5) =
b) (+3) + (-4) =
c) (-8) + (+6) =
d) (+5) + (-9) =
e) (-6) + (+2) =
f) (+9) + (-1) =
g) (+8) + (-3) =
h) (+12) + (-3) =
i) (-7) + (+15) =
j) (-18) + (+8) =
i) (+7) + (-7) =
l) (-6) + 0 =
m) +3 + (-5) =
n) (+2) + (-2) =
o) (-4) +10 =
p) -7 + (+9) =
q) +4 + (-12) =
r) +6 + (-4) =

3) Calcule

a) (+5 + (+7) =
b) (-8) + (-9) =
c) (-37) + (+35) =
d) (+10) + (-9) =
e) (-15 ) + (+15) =
f) (+80) + 0 =
g) (-127) + (-51) =
h) (+37) + (+37) =
i) (-42) + (-18) =
j) (-18) + (+17) =
l) (-18) + (+19) =
m) (-1) + (-42) =
n) (+325) + (-257) =
o) 0 + (-75) =
p) (-121) + (+92) =
q ) (-578) + (-742) =
r) (+101) + (-101) =
s) (-1050) + (+876) =
PROPRIEDADE DA ADIÇÃO

1) Fechamento : a soma de dois números inteiros é sempre um número inteiro

exemplo (-4) + (+7) =( +3)

2) Comutativa: a ordem das parcelas não altera a soma.

exemplo: (+5) + (-3) = (-3) + (+5)

3) Elemento neutro: o número zero é o elemento neutro da adição.

exemplo: (+8) + 0 = 0 + (+8) = +8

4) Associativa: na adição de três números inteiros, podemos associar os dois
primeiros ou os dois últimos, sem que isso altere o resultado.

exemplo: [(+8) + (-3) ] + (+4) = (+8) + [(-3) + (+4)]

5) Elemento oposto: qualquer número inteiro admite um simétrico ou oposto.

exemplo: (+7) + (-7) = 0

ADIÇÃO DE TRÊS OU MAIS NÚMEROS


Para obter a soma de três ou mais números adicionamos os dois primeiros e, em
seguida, adicionamos esse resultado com o terceiro, e assim por diante.

exemplos

1) -12 + 8 - 9 + 2 - 6 =
= -4 - 9 + 2 - 6 =
= -13 + 2 - 6 =
= -11 - 6 =
= -17

2) +15 -5 -3 +1 - 2 =
= +10 -3 + 1 - 2 =
= +7 +1 -2 =
= +8 -2 =
= +6

Na adição de números inteiros podemos cancelar números opostos, poque a soma
deles é zero.


INDICAÇÃO SIMPLIFICADA

a) podemos dispensar o sinal de + da primeira parcela quando esta for positiva.


exemplos


a) (+7) + (-5) = 7 - 5 = +2

b) (+6) + (-9) = 6 - 9 = -3


b) Podemos dispensar o sinal + da soma quando esta for positiva


exemplos


a) (-5) + (+7) = -5 + 7 = 2

b) (+9) + (-4) = 9 - 4 = 5

EXERCÍCIOS


1) Calcule


a) 4 + 10 + 8 =
b) 5 - 9 + 1 =
c) -8 - 2 + 3 =
d) -15 + 8 - 7 =
e) 24 + 6 - 12 =
f) -14 - 3 - 6 - 1 =
g) -4 + 5 + 6 + 3 - 9 =
h) -1 + 2 - 4 - 6 - 3 - 8 =
i) 6 - 8 - 3 - 7 - 5 - 1 + 0 - 2 =
j) 2 - 10 - 6 + 14 - 1 + 20 =
l) -13 - 1 - 2 - 8 + 4 - 6 - 10 =


2) Efetue, cancelando os números opostos:


a) 6 + 4 - 6 + 9 - 9 =
b) -7 + 5 - 8 + 7 - 5 =
c) -3 + 5 + 3 - 2 + 2 + 1 =
d) -6 + 10 + 1 - 4 + 6=
e) 10 - 6 + 3 - 3 - 10 - 1 =
f) 15 - 8 + 4 - 4 + 8 - 15 =


3) Coloque em forma simplificada ( sem parênteses)


a) (+1) + (+4) +(+2) =
b) (+1) + (+8) + (-2) =
c) (+5) +(-8) + (-1) =
d) (-6) + (-2) + (+1) =


4) Calcule:


a) (-2) + (-3) + (+2) =
b) (+3) + (-3) + (-5) =
c) (+1) + (+8) +(-2) =
d) (+5) + (-8) + (-1) =
e) (-6) + (-2) + (+1) =

f) (-8) + ( +6) + (-2) =
g) (-7) + 6 + (-7) =
h) 6 + (-6) + (-7) =
i) -6 + (+9) + (-4) =
j) (-4) +2 +4 + (+1) =


5) Determine as seguintes somas


a) (-8) + (+10) + (+7) + (-2) =
b) (+20) + (-19) + (-13) + (-8) =
c) (-5) + (+8) + (+2) + (+9) =
d) (-1) + (+6) + (-3) + (-4) + (-5) =
e) (+10) + (-20) + (-15) + (+12) + (+30) + (-40) =
f) (+3) + (-6) + (+8) =
g) (-5) + (-12) + (+3) =
h) (-70) + (+20) + (+50) =
i) (+12) + (-25) + (+15) =
j) (-32) + (-13) + (+21) =
l) (+7) + (-5) + (-3) + (+10) =
m) (+12) + (-50) + (-8) + (+13) =
n) (-8)+(+4)+ (+8) + (-5) + (+3) =
o) (-36) + (-51) + (+100) + (-52) =
p) (+17) + (+13) + (+20) + (-5) + (-45) =

6) Dados os números x= 6, y = 5 e z= -6, calcule


a) x + y =
b) y + z =
c) x + z =

SUBTRAÇÃO


A operação de subtração é uma operação inversa à da adição


Exemplos

a) (+8) - (+4) = (+8) + (-4) = = +4
b) (-6) - (+9) = (-6) + (-9) = -15
c) (+5) - (-2) = ( +5) + (+2) = +7

Conclusão: Para subtraimos dois números relativos, basta que adicionemos ao
primeiro o oposto do segundo.

Observação: A subtração no conjunto Z tem apenas a propriedade do fechamento ( a
subtração é sempre possivel)
ELIMINAÇÃO DE PARÊNTESES PRECEDIDOS DE SINAL
NEGATIVO
Para facilitar o cálculo, eliminamos os parênteses usando o segnificado do oposto

veja:

a) -(+8) = -8 (significa o oposto de +8 é -8 )

b) -(-3) = +3 (significa o oposto de -3 é +3)

analogicamente:

a) -(+8) - (-3) = -8 +3 = -5

b) -(+2) - (+4) = -2 - 4 = -6

c) (+10) - (-3) - +3) = 10 + 3 - 3 = 10

conclusão: podemos eliminar parênteses precedidos de sinal negativo trocando-se o
sínal do número que está dentro dos parênteses.

EXERCÍCIOS

1) Elimine os parênteses

a) -(+5) =
b) -(-2) =
c) - (+4) =
d) -(-7) =
e) -(+12) =
f) -(-15) =
g) -(-42) =
h) -(+56) =

2) Calcule:

a) (+7) - (+3) =
b) (+5) - (-2) =
c) (-3) - ( +8) =

d) (-1) -(-4) =
e) (+3) - (+8) =
f) (+9) - (+9) =
g) (-8) - ( +5) =
h) (+5) - (-6) =
i) (-2) - (-4) =
j) (-7) - (-8) =
l) (+4) -(+4) =
m) (-3) - ( +2) =
n) -7 + 6 =
o) -8 -7 =
p) 10 -2 =
q) 7 -13 =
r) -1 -0 =
s) 16 - 20 =
t) -18 -9 =
u) 5 - 45 =
v) -15 -7 =
x) -8 +12 =
z) -32 -18 =

3) Calcule:

a) 7 - (-2) =
b) 7 - (+2) =
c) 2 - (-9) =
d) -5 - (-1) =
e) -5 -(+1) =
f) -4 - (+3) =
g) 8 - (-5) =
h) 7 - (+4) =
i) 26 - 45 =
j) -72 -72 =
l) -84 + 84 =
m) -10 -100 =
n) -2 -4 -1 =
o) -8 +6 -1 =
p) 12-7 + 3 =
q) 4 + 13 - 21 =
r) -8 +8 + 1 =
s) -7 + 6 + 9 =
t) -5 -3 -4 - 1 =
u) +10 - 43 -17 =
v) -6 -6 + 73 =
x) -30 +30 - 40 =
z) -60 - 18 +50 =

4) Calcule:

a) (-4) -(-2)+(-6) =
b) (-7)-(-5)+(-8) =
c) (+7)-(-6)-(-8) =
d) (-8) + (-6) -(+3) =
e) (-4) + (-3) - (+6) =
f) 20 - (-6) - (-8) =
g) 5 - 6 - (+7) + 1 =
h) -10 - (-3) - (-4) =
i) (+5) + (-8) =
j) (-2) - (-3) =
l) (-3) -(-9) =
m) (-7) - (-8) =
n) (-8) + (-6) - (-7) =
o) (-4) + (-6) + (-3) =
p) 15 -(-3) - (-1) =
q) 32 - (+1) -(-5) =
r) (+8) - (+2) =
s) (+15) - (-3) =
t) (-18) - (-10) =
u) (-25) - (+22) =
v) (-30) - 0 =
x) (+180) - (+182) =
z) (+42) - (-42) =

5) Calcule:

a) (-5) + (+2) - (-1) + (-7) =
b) (+2) - (-3) + (-5) -(-9) =
c) (-2) + (-1) -(-7) + (-4) =
d) (-5) + (-6) -(-2) + (-3) =
e) (+9) -(-2) + (-1) - (-3) =
f) 9 - (-7) -11 =
g) -2 + (-1) -6 =
h) -(+7) -4 -12 =
i) 15 -(+9) -(-2) =
j) -25 - ( -5) -30 =
l) -50 - (+7) -43 =
m) 10 -2 -5 -(+2) - (-3) =
n) 18 - (-3) - 13 -1 -(-4) =
o) 5 -(-5) + 3 - (-3) + 0 - 6 =
p) -28 + 7 + (-12) + (-1) -4 -2 =
q) -21 -7 -6 -(-15) -2 -(-10) =
r) 10 -(-8) + (-9) -(-12)-6 + 5 =
s) (-75) - (-25) =
t) (-75) - (+25) =

u) (+18) - 0 =
v) (-52) - (-52) =
x) (-16)-(-25) =
z) (-100) - (-200) =
ELIMINAÇÃO DOS PARENTESES



1) parenteses precedidos pelo sinal +

Ao eliminarmos os parênteses e o sinal + que os precede, devemos conservar os sinais
dos números contidos nesses parênteses.

exemplo

a) + (-4 + 5) = -4 + 5

b) +(3 +2 -7) = 3 +2 -7

2) Parênteses precedidos pelo sinal -

Ao eliminarmos os parênteses e o sinal de - que os precede, devemos trocar os sinais
dos números contidos nesses parênteses.

exemplo

a) -(4 - 5 + 3) = -4 + 5 -3

b) -(-6 + 8 - 1) = +6 -8 +1

EXERCICIOS

1) Elimine os parênteses:

a) +(-3 +8) =
b) -(-3 + 8) =
c) +(5 - 6) =
d) -(-3-1) =
e) -(-6 + 4 - 1) =
f) +(-3 -2 -1) =
g) -(4 -6 +8) =
h) + (2 + 5 - 1) =

2) Elimine os parênteses e calcule:

a) + 5 + ( 7 - 3) =

b) 8 - (-2-1) =
c) -6 - (-3 +2) =
d) 18 - ( -5 -2 -3 ) =
e) 30 - (6 - 1 +7) =
f) 4 + (-5 + 0 + 8 -4) =
g) 4 + (3 - 5) + ( -2 -6) =
h) 8 -(3 + 5 -20) + ( 3 -10) =
i) 20 - (-6 +8) - (-1 + 3) =
j) 35 -(4-1) - (-2 + 7) =

3) Calcule:

a) 10 - ( 15 + 25) =
b) 1 - (25 -18) =
c) 40 -18 - ( 10 +12) =
d) (2 - 7) - (8 -13) =
e) 7 - ( 3 + 2 + 1) - 6 =
f) -15 - ( 3 + 25) + 4 =
g) -32 -1 - ( -12 + 14) =
h) 7 + (-5-6) - (-9 + 3) =
i) -(+4-6) + (2 - 3) =
j) -6 - (2 -7 + 1 - 5) + 1 =
EXPRESSÕES COM NÚMEROS INTEIROS RELATIVOS
Lembre-se de que os sinais de associação são eliminados obedecendo à seguinte
ordem:

1°) PARÊNTESES ( ) ;

2°) COLCHETES [ ] ;

3°) CHAVES { } .

Exemplos:
1°) exemplo

8 + ( +7 -1 ) - ( -3 + 1 - 5 ) =
8 + 7 - 1 + 3 - 1 + 5 =
23 - 2 = 21

2°) exemplo

10 + [ -3 + 1 - ( -2 + 6 ) ] =
10 + [ -3 + 1 + 2 - 6 ] =
10 - 3 + 1 + 2 - 6 =
13 - 9 =
= 4

3°) exemplo

-17 + { +5 - [ +2 - ( -6 +9 ) ]} =
-17 + { +5 - [ +2 + 6 - 9]} =
-17 + { +5 - 2 - 6 + 9 } =
-17 +5 - 2 - 6 + 9 =
-25 + 14 =
= - 11
EXERCICIOS

a) Calcule o valor das seguintes expressões :

1) 15 -(3-2) + ( 7 -4) =
2) 25 - ( 8 - 5 + 3) - ( 12 - 5 - 8) =
3) ( 10 -2 ) - 3 + ( 8 + 7 - 5) =
4) ( 9 - 4 + 2 ) - 1 + ( 9 + 5 - 3) =
5) 18 - [ 2 + ( 7 - 3 - 8 ) - 10 ] =
6) -4 + [ -3 + ( -5 + 9 - 2 )] =
7) -6 - [10 + (-8 -3 ) -1] =
8) -8 - [ -2 - (-12) + 3 ] =
9) 25 - { -2 + [ 6 + ( -4 -1 )]} =
10) 17 - { 5 - 3 + [ 8 - ( -1 - 3 ) + 5 ] } =
11) 3 - { -5 -[8 - 2 + ( -5 + 9 ) ] } =
12) -10 - { -2 + [ + 1 - ( - 3 - 5 ) + 3 ] } =
13) { 2 + [ 1 + ( -15 -15 ) - 2] } =
14) { 30 + [ 10 - 5 + ( -2 -3)] -18 -12} =
15) 20 + { [ 7 + 5 + ( -9 + 7 ) + 3 ] } =
16) -4 - { 2 + [ - 3 - ( -1 + 7) ] + 2} =
17) 10 - { -2 + [ +1 + ( +7 - 3) - 2] + 6 } =
18) -{ -2 - [ -3 - (-5) + 1 ]} - 18 =
19) -20 - { -4 -[-8 + ( +12 - 6 - 2 ) + 2 +3 ]} =
20) {[( -50 -10) + 11 + 19 ] + 20 } + 10 =
Tags