History of Nanoparticles
Dr Zekeria Yusuf Haramaya University 6
Dr Zekeria Yusuf Haramaya University 7
Major developments in the application of Nanotechnology
Dr Zekeria Yusuf Haramaya University 8
Dr Zekeria Yusuf Haramaya University 9
Dr Zekeria Yusuf Haramaya University 10
Dr Zekeria Yusuf Haramaya University 11
Nanoparticles
•Nanoparticlesaredefinedasparticlesthathaveatleastonedimensionin
thenanorange(1to100nm).
•Nanoscalematerials(nanoparticles,nanopores,nanoshells,nanostructures
etc)allowhighlysensitivedetectionbyspecificinteractionswithvarious
biomoleculesonbothsurfaceandinsidethecells.
•Nanotechnologyhelpsindevelopmentofsmall,highly-efficientand
inexpensivesensors,withbroadapplications.
•Theseoffersignificantadvantagesoverconventionalsensors.Thisincludes
greatersensitivityandselectivity,lowerproductioncosts,reducedpower
consumptionaswellasimprovedstability.
•Becauseoftheirsubmicrondimensions,nanosensors,nanoprobes&other
nanosystemshaveallowedsimple&rapidanalysesinvivo.
Dr Zekeria Yusuf Haramaya University 12
Nanomaterials….
•Biologicalsystemsoftenfeaturenatural,
functionalnanomaterials.
•Thestructureofforaminifera,viruses
(capsid),thewaxcrystalscoveringa
lotusornasturtiumleaf,spider-mite
silkarefewexamplesofnatural
nanomaterials.
•Naturalinorganicnanomaterialsoccur
throughcrystalgrowthinthediverse
chemicalconditionsoftheearth‘scrust.
Forex.claysdisplaycomplex
nanostructuresduetoanisotropyof
theirunderlyingcrystalstructure,&
volcanicactivitycangiverisetoopals,
whichareaninstanceofanaturally
occurringphotoniccrystalsduetotheir
nanoscalestructure.
Dr Zekeria Yusuf Haramaya University 13
Dr Zekeria Yusuf Haramaya University 14
Nanoparticles
Nanoparticlesaretheparticlesofsizebetween1nmto100nmrange).
Nanometer-Onebillionth(10
-9
)ofameter
ThesizeofHydrogenatom0.04nm
ThesizeofProteins~1-20nm
Featuresizeofcomputerchips180nm
Diameterofhumanhair~10µm
Atthenanoscale,thephysical,chemical,andbiological
propertiesofmaterialsdifferinfundamentalandvaluable
waysfromthepropertiesofindividualatomsandmoleculesor
bulkmatter
15Dr Zekeria Yusuf Haramaya University
Dr Zekeria Yusuf Haramaya University 16
Why NANO..?
Dr Zekeria Yusuf Haramaya University 17
Dr Zekeria Yusuf Haramaya University 18
Novel Properties of nanoparticles
• Small size
• High surface area
• Ease to suspend in liquids
• Deep access to cells and organelles
• Improved physical, chemical & biological
properties
Properties of nanoparticlesare different from their
bulk counterparts.
Extremely high surface area to volume ratio results
in surface dependent material properties.
Dr Zekeria Yusuf Haramaya University 19
Nano-scale effects on properties over conventional methods
20Dr Zekeria Yusuf Haramaya University
Dr Zekeria Yusuf Haramaya University 21
Nanomaterials
•Nanomaterialsarecommonlydefinedasmaterialswithanaverage
grainsizelessthan100nm.
•Nano-biomaterialsdisplaydistinctbiologicaleffectswhencompared
withbulkmaterialshavingsamechemicalcomposition.
•Nanomaterialswithfastiontransportarerelatedalsotonanoionics&
nanoelectronics
•Theirnanoscaledsizeemanatesnovelcharacteristicssuch
asincreasedstrength,chemicalreactivityorconductivity.
22
•Engineerednanomaterials(ENM)arematerialscreatedby
manipulationofmatteratthenanoscaletoproducenew
materials,structures,anddevices.
Dr Zekeria Yusuf Haramaya University
Classification of Nanomaterials
Nanomaterialsare classified according to the length scale of each of its
dimension:
•0D:zeroscaleallthreedimensionsinthenanoscale(nanoparticles).
•1D:onedimensioninnanoscaleandothertwoinmacroscale(nanofibers,
nanowires)
•2D:twodimensionsinnanoscaleandtheotherinthemacroscale(nano
sheets,thinfilms)
•3D:nodimensionsatthenanoscale,allareinthemacroscale
(nanostructureswithnanomaterials
23Dr Zekeria Yusuf Haramaya University
Dr Zekeria Yusuf Haramaya University 24
Nanotools and Nanodevices
Dr Zekeria Yusuf Haramaya University 25
Dr Zekeria Yusuf Haramaya University 26
Dr Zekeria Yusuf Haramaya University 27
Dr Zekeria Yusuf Haramaya University 28
Dr Zekeria Yusuf Haramaya University 29
Dr Zekeria Yusuf Haramaya University 30
Dr Zekeria Yusuf Haramaya University 31
Quantum Confinement
QuantumConfinementisthespatialconfinementof
electron-holepairs(excitons)inoneormore
dimensionswithinamaterial.
o1D confinement: Quantum Wells
o2D confinement: Quantum Wire
o3D confinement: Quantum Dot
•Quantumconfinementismoreprominentin
semiconductorsbecausetheyhaveanenergygapin
theirelectronicbandstructure.
•Metalsdonothaveabandgap,soquantumsizeeffects
arelessprevalent.Quantumconfinementisonly
observedatdimensionsbelow2nm.
Dr Zekeria Yusuf Haramaya University 32
Dr Zekeria Yusuf Haramaya University 33
Dr Zekeria Yusuf Haramaya University 34
Therefore,themorespatiallyconfinedandlocalizedaparticlebecomes,the
broadertherangeofitsmomentum/energy.
•Thisismanifestedasanincreaseintheaverageenergyofelectronsinthe
conductionband=increasedenergylevelspacing=largerbandgap
Dr Zekeria Yusuf Haramaya University 35
Dr Zekeria Yusuf Haramaya University 36
Dr Zekeria Yusuf Haramaya University 37
Dr Zekeria Yusuf Haramaya University 38
Applications of QDs
•Quantum dots are
tiny crystals tha
glow/ fluoresce
when they are
stimulated by
ultraviolet light.
•Fluorescent
nanocrystals.
•Common QDs: CdS,
•CdSe, PbS, PbSe,
PbTd, CuCl
Dr Zekeria Yusuf Haramaya University 39
Dr Zekeria Yusuf Haramaya University 40
Dr Zekeria Yusuf Haramaya University 41
Dr Zekeria Yusuf Haramaya University 42
Dr Zekeria Yusuf Haramaya University 43
Dr Zekeria Yusuf Haramaya University 44
Dr Zekeria Yusuf Haramaya University 45
Dr Zekeria Yusuf Haramaya University 46
Dr Zekeria Yusuf Haramaya University 47
Dr Zekeria Yusuf Haramaya University 48
Dr Zekeria Yusuf Haramaya University 49
Light emitters
Dr Zekeria Yusuf Haramaya University 50
New applications for QDs are continuously being discovered.
• For example: Solar cells that incorporate QDs may lead to more efficient light
harvesting and energy conversion.
Dr Zekeria Yusuf Haramaya University 51
Dr Zekeria Yusuf Haramaya University 52
Dr Zekeria Yusuf Haramaya University 53
Dr Zekeria Yusuf Haramaya University 54
Dr Zekeria Yusuf Haramaya University 55
Dr Zekeria Yusuf Haramaya University 56
Dr Zekeria Yusuf Haramaya University 57
Dr Zekeria Yusuf Haramaya University 58
Dr Zekeria Yusuf Haramaya University 59
Dr Zekeria Yusuf Haramaya University 60
Dr Zekeria Yusuf Haramaya University 61
Dr Zekeria Yusuf Haramaya University 62
Dr Zekeria Yusuf Haramaya University 63
Dr Zekeria Yusuf Haramaya University 64
Drug delivery, & cancer treatment
Dr Zekeria Yusuf Haramaya University 65
Dr Zekeria Yusuf Haramaya University 66
Dr Zekeria Yusuf Haramaya University 67
Dr Zekeria Yusuf Haramaya University 68
IMPROVING MRI Magnetic resonance imaging)
•Ironoxidenanoparticlescanusedtoimprove
MagneticResonanceImagining(MRI)imagesof
cancertumors.
•Thenanoparticleiscoatedwithapeptidethat
bindstoacancertumor,oncethenanoparticles
areattachedtothetumorthemagneticproperty
oftheironoxideenhancestheimagesfromthe
MagneticResonanceImaginingscan.
Dr Zekeria Yusuf Haramaya University 69
Characterization of
nanomaterials
Dr Zekeria Yusuf Haramaya University 70
Dr Zekeria Yusuf Haramaya University 71
Characterization of Nanoparticles
1. Size and surface Morphology
2. Specific Surface Area
3. Surface Charge and ElectrophoreticMobility
4. Surface Hydrophobicity
5. Density
6. Molecular weight Measurements of Nanoparticles
7. Drug Entrapment efficiency
8. Kinetic Study
9. Stability of Nanoparticles
10. Drug-Excipientcompatibility studies
11. In-vitro Release Studies
12. Lamellarity
13. Phase Behaviour
14. Chemical Characterization (Liposomes)
15. Biological Characterization (Liposomes)
Dr Zekeria Yusuf Haramaya University 72
A. Dynamic Light Scattering (DLS)-
DLS measures brownianmotion and
relates this to the size of the particles
(Hydrodynamic diameter).
Bias toward larger particles.
We can determine polydispersity
index (PDI), zeta potential and
aggregation of particles.
Instrumentation -Zetasizer(Malvern
panalyticaltnstrument, UK), Laser
source, Photon detector, Polystyrene
cuvettes/Quartz or optical quality
glass cuvetteswith caps.
Dispersant –Water or whatever the
dispersant used is.
Dr Zekeria Yusuf Haramaya University 73
B. NanoSight (NTA)-
•Nanosighthelpsin
visualizationandmeasuring
nanoparticlesize&
•concentration with
precision and accuracy.
•Nanosight instrument uses
NanoparticleTracking
Analysis (NTA) to
characterize nanoparticles
from 10 nm –2000 nm in
solution.
•Characterization of
aggregation state.
Dr Zekeria Yusuf Haramaya University 74
C. Scanning Electron
Microscopy (SEM)-
SEM is used to visualize
the surface morphology
of organisms, cells and
materials.
Resolution is 1-2 nm.
Can determine the
elemental composition.
Determine the size,
shape, surface
morphology.
Dr Zekeria Yusuf Haramaya University 75
D. Transmission Electron
Microscopy (TEM)-
Resolution is 0.1 –0.2 nm.
Determine the internal
structure or arrangements
of the particles.
Measure the size, size
distribution, and
morphology.
Samples are prepared for
imaging by drying
nanoparticleson a grid that
is coated with a thin layer of
carbon/formvar.
Dr Zekeria Yusuf Haramaya University 76
Dr Zekeria Yusuf Haramaya University 77
Dr Zekeria Yusuf Haramaya University 78
Dr Zekeria Yusuf Haramaya University 79
Dr Zekeria Yusuf Haramaya University 80
APPLICATIONS OF X-RAY DIFFRACTION
•ObtainXRDpatternsareusedtomeasured-
spacingsofthegivencompound.
•XRDisusedtodeterminationofCis-Trans
isomerism.
•X-raydiffractionisusedtomeasurethicknessof
thinfilmsandmulti-layers.
•XRDisusedtodetermineatomicarrangement.
•XRDisusedtomeasurethesize,shapeand
internalstressofsmallcrystallineregions.
Dr Zekeria Yusuf Haramaya University 81
Dr Zekeria Yusuf Haramaya University 82
Dr Zekeria Yusuf Haramaya University 83
Dr Zekeria Yusuf Haramaya University 84
Dr Zekeria Yusuf Haramaya University 85
Dr Zekeria Yusuf Haramaya University 86
Dr Zekeria Yusuf Haramaya University 87
Dr Zekeria Yusuf Haramaya University 88
Dr Zekeria Yusuf Haramaya University 89
Dr Zekeria Yusuf Haramaya University 90
Dr Zekeria Yusuf Haramaya University 91
Dr Zekeria Yusuf Haramaya University 92
Dr Zekeria Yusuf Haramaya University 93
Dr Zekeria Yusuf Haramaya University 94
Dr Zekeria Yusuf Haramaya University 95
Dr Zekeria Yusuf Haramaya University 96
Infrared waves
Dr Zekeria Yusuf Haramaya University 97
Dr Zekeria Yusuf Haramaya University 98
Dr Zekeria Yusuf Haramaya University 99
Synthesis of Nanoparticles
Dr Zekeria Yusuf Haramaya University 100
Synthesis of Nanoparticles
Dr Zekeria Yusuf Haramaya University 101
Dr Zekeria Yusuf Haramaya University 102
TopDownapproach
Theseseektocreatesmallerdevicesbyusinglarger
onestodirecttheirassembly
Themostcommontop-downapproachto
fabricationinvolveslithographicpatterning
techniquesusingshortwavelengthopticalsources
BottomupApproach
Theseseektoarrangesmallercomponentsintomore
complexassemblies
Usechemicalorphysicalforcesoperatingatthe
nanoscaletoassemblebasicunitsintolargerstructures
examples :
1.Indiungalliumarsenide(InGaAs)quantumdotscanbe
formedbygrowingthinlayersofInGaAsonGaAs
2.Formationofcarbonnanotubes
Dr Zekeria Yusuf Haramaya University 103
Dr Zekeria Yusuf Haramaya University 104
Dr Zekeria Yusuf Haramaya University 105
3 methods of synthesis of NP
1. Physical
2. Chemical
3. Biological
1. Physical methods
2 physical methods: mechanical and vapor
I. Mechanical
1. High energy ball milling
2. Melt mixing
II. Vapour
1. Physical vapourdeposition
2. Laser ablation
3. Sputter deposition
4. Electric arc deposition
5. Ion implantation
Dr Zekeria Yusuf Haramaya University 106
Dr Zekeria Yusuf Haramaya University 107
2. CHEMICAL METHODS OF SYNTHESIS
•Simple techniques
•Inexpensive instrumentation
•Low temperature (<350ºC)
synthesis
•Doping of foreign atoms (ions)
is possible during
•synthesis
•Large quantities of material
can be obtained
•Variety of sizes and shapes are
possible
•Self assembly or patterning is
possible
•Sol-gel method
•Pyrolysis/thermolysis
Dr Zekeria Yusuf Haramaya University 108
Dr Zekeria Yusuf Haramaya University 109
Dr Zekeria Yusuf Haramaya University 110
Dr Zekeria Yusuf Haramaya University 111
Dr Zekeria Yusuf Haramaya University 112
Dr Zekeria Yusuf Haramaya University 113
Dr Zekeria Yusuf Haramaya University 114
Dr Zekeria Yusuf Haramaya University 115
Pyrolysis
Dr Zekeria Yusuf Haramaya University 116
Dr Zekeria Yusuf Haramaya University 117
sol-gel Method
•The sol-gel process is a wet-chemical technique (also
known as chemical solution deposition) widely used
recently in the fields of materials science and ceramic
engineering.
Steps
•Formation of stable sol.
•Gelation
•Gel aging into a solid mass. This causes contraction of
the gel network, also phase transformations and
Ostwald ripening.
•Drying of the gel to remove liquid phases. This can lead
to fundamental changes in the structure of the gel.
Dr Zekeria Yusuf Haramaya University 118
Sol-gel Method…
Dr Zekeria Yusuf Haramaya University 119
Advantages of sol-gel Method
•2typesofmaterialsorcomponents-“sol”and
“gel”
•M.Ebelmansynthesizedthemin1845
•Lowtemperatureprocess-lessenergy
consumptionandlesspollution
•Generateshighlypure,wellcontrolledceramics
•Economicalroute,providedprecursorsarenot
expensive
•Possibletosynthesizenanoparticles,nanorods,
nanotubesetc.,
Dr Zekeria Yusuf Haramaya University 120
COLLOIDS AND COLLOIDS IN SOLUTION
•Nanoparticlessynthesizedbychemical
methodsform“colloids”
•Twoormorephases(solid,liquidorgas)of
sameordifferentmaterialsco-existwiththe
dimensionsofatleastoneofthephasesless
thanamicrometre
•Maybeparticles,platesorfibres
•Nanomaterialsareasubclassofcolloids,in
whichthedimensionsofcolloidsisinthe
nanometrerange
Dr Zekeria Yusuf Haramaya University 121
Dr Zekeria Yusuf Haramaya University 122
3. BIOLOGICAL/Green METHODS
•Green synthesis
3 types:
1.Useofmicroorganismslikefungi,
yeats(eukaryotes) or bacteria,
actinomycetes(prokaryotes)
2. Use of plant extracts or enzymes
3.Use of templates like DNA, membranes,
viruses and diatoms
Dr Zekeria Yusuf Haramaya University 123
SYNTHESIS USING MICROORGANISMS
•Microorganismsarecapableofinteractingwithmetalscomingin
contactwithhemthroughtheircellsandformnanoparticles.
•Thecell-metalinteractionsarequitecomplex
•Certainmicroorganismsarecapableofseparatingmetalions.
•PseudomonasstuzeriAg259bacteriaarecommonlyfoundinsilver
mines.
•Capableofaccumulatingsilverinsideoroutsidetheircell
•walls
•Numeroustypesofsilvernanoparticlesofdifferentshapescanbe
producedhavingsize<200nmintracellularly
•Lowconcentrationsofmetalions(Au⁺,Ag⁺etc)canbeconvertedto
metalnanoparticlesbyLactobacillusstrainpresentinbuttermilk.
Dr Zekeria Yusuf Haramaya University 124
•Fungi –Fusariumoxysporumchallenged with gold or silver salt for
app. 3 days produces gold or silver nanoparticlesextracellularly.
•ExtremophilicactinomyceteThermomonosporasp. Produces gold
nanoparticlesextracellularly.
•Semiconductor nanoparticleslike CdS, ZnS, PbSetc., can be
produced using different microbial routes.
•Sulphatereducing bateriaof the family Desulfobacteriaceaecan
form 2-5nm ZnSnanoparticle. Klebsiellapneumoniaecan be used to
synthesize CdSnanoparticles.
•when [Cd(NO₃)₂] salt is mixed in a solution containing bacteria and
solution is shaken for about1 day at ~38ºC ,CdSnanoparticlein the
size range ~5 to 200 nm can be formed.
Dr Zekeria Yusuf Haramaya University 125
SYNTHESIS USING PLANT EXTRACTS
Dr Zekeria Yusuf Haramaya University 126
Dr Zekeria Yusuf Haramaya University 127
Dr Zekeria Yusuf Haramaya University 128
SYNTHESIS USING DNA
•CdSor other sulfide nanoparticlescan be synthesized using DNA.
•DNAcanbindtothesurfaceofgrowingnanoparticles.
•dsSalmon sperm DNA can be sheared to an average size of 500bp.
•Cadmium acetate is added to a desired medium like water, ethanol,
propanoletc.
•Reaction is carried out in a glass flask-facility to purge the solution
and flow with an inert gas like N₂.
•Addition of DNA should be made and then Na₂Scan be added
dropwise.
•Depending on the concentrations of cadmium acetate, sodium
chloride and DNA ,nanoparticlesof CdSwith sizes less than ~10 nm
can be obtained.
•DNA bonds through its negatively charged PO₄ group to positively
charged (Cd+) nanoparticlesurface.
Dr Zekeria Yusuf Haramaya University 129
USEOFPROTEINS,TEMPLATESLIKEDNA,S-LAYERSETC
•Various inorganic materials such as
carbonates, phosphates, silicates etc are
found in parts of bones, teeth, shells etc.
•Biological systems are capable of integrating
with inorganic materials
•Widely used to synthesize nanoparticles
Dr Zekeria Yusuf Haramaya University 130
FERRITIN
•Ferritinis a colloidal protein of nanosize.
•Stored iron in metabolic process and is abundant
in animals.
•Capable of forming 3 dimensional hierarchical
structure.
•24 peptide subunits –arranged in such a way that
they create a central cavity of ~6 nm.
•Diameter of polypeptide shell is 12 nm.
•Ferritincan accommodate 4500 Fe atoms.
Dr Zekeria Yusuf Haramaya University 131
Dr Zekeria Yusuf Haramaya University 132
Dr Zekeria Yusuf Haramaya University 133
PROCEDURE TO CONVERT FERRITIN TO
APOFERRITIN
Dr Zekeria Yusuf Haramaya University 134
Applications of Nanomaterials
and Nanoparticles
Dr Zekeria Yusuf Haramaya University 135
Application of nanopaticles and nanomaterials
Application on many fields such as:
oMedicine/Health : Nanomedicine
oFood & agriculture
oBiotechnology
oInformation technology
oMechanical engineering & Robotics
oAdvance materials & textiles
oEnergy and Environment
oNational security & defence
oAerospace
Dr Zekeria Yusuf Haramaya University 136
Dr Zekeria Yusuf Haramaya University 137
Dr Zekeria Yusuf Haramaya University 138
Dr Zekeria Yusuf Haramaya University 139
Dr Zekeria Yusuf Haramaya University 140
Dr Zekeria Yusuf Haramaya University 141
Dr Zekeria Yusuf Haramaya University 142
Dr Zekeria Yusuf Haramaya University 143
Dr Zekeria Yusuf Haramaya University 144
Dr Zekeria Yusuf Haramaya University 145
Dr Zekeria Yusuf Haramaya University 146
Dr Zekeria Yusuf Haramaya University 147
Dr Zekeria Yusuf Haramaya University 148
Dr Zekeria Yusuf Haramaya University 149
Dr Zekeria Yusuf Haramaya University 150
Dr Zekeria Yusuf Haramaya University 151
Dr Zekeria Yusuf Haramaya University 152
Dr Zekeria Yusuf Haramaya University 153
Dr Zekeria Yusuf Haramaya University 154
Dr Zekeria Yusuf Haramaya University 155
Dr Zekeria Yusuf Haramaya University 156
Dr Zekeria Yusuf Haramaya University 157
Multiplex Diagnosis
Dr Zekeria Yusuf Haramaya University 158
Four quantum dots of different diameter (i.e. different color) are respectively
functionalized with four different antigens. Allowing for the distinction of two
distinct phenotypes.
Cancer Therapy
There is a search dual-mode nanoparticle that can detect a
tumor (imaging)and destroy it (therapy).
There is two action modes for therapeutical nanoparticles.
159
Passive Targeting Active Targeting
Based on nanoparticle
functionalization for specific
targeting of cancerous cells
Based on retention effect of
particle of certain hydrodynamic
size in cancerous tissues
Dr Zekeria Yusuf Haramaya University
Taking advantage of retention
Nanoparticles injected in the
blood stream do not permeate
through healthy tissues.
Blood vessels in the surrounding
of tumorous tissues are defective
and porous.
injected in the blood permeate
through blood vessels toward
tumorous tissues, wherein they
accumulate.
Tumorous tissues suffer of
Enhanced Permeability and
Retention effect.
Dr Zekeria Yusuf Haramaya University 160
Respirocyte-A proposed nanorobot
Respirocytesare:
Artificial mechanical red blood
cells.
Carry oxygen and carbon dioxide
molecules.
Deliver 236 times more oxygen to
the body tissues when compared
to natural red blood cells .
Applications :
–Treatment of Anemia
–Transfusions and perfusions
–Fetal and Child Related
disorders
Dr Zekeria Yusuf Haramaya University 161
•Spherical 1 micro meter diameter sized
•Constructed of 18 billion atoms
Lab-on-a-Chip
The Ideal Technology for Bio-chemical Analysis
•A lab-on-a-chip (LOC) is a device that integrates one or
several laboratory functions on a single chip of only
millimeters to a few square centimeters in size.
162Dr Zekeria Yusuf Haramaya University
What can “Lab-on-a-chip” do?
Biochemical assays: real-time PCR, immunoassay,
dielectrophoresis for detecting cancer cells and bacteria, etc.
Chemical application: separating molecules from mixtures,
chemical reactors, chemical detections etc.
Biological application: cell coculture, biosensor, drug
screening, single-cell analysis, etc.
Dr Zekeria Yusuf Haramaya University 163
Disadvantages of LOCs
Novel technology and therefore not yet fully developed.
Processes in LOCs more complex than in conventional lab
equipment.
Detection principles may not always scale down in a positive
way, leading to low signal-to-noise ratios.
Although the absolute geometric accuracies and precision in
microfabrication are high, they are often rather poor in a
relative way, compared to precision engineering for instance.
Dr Zekeria Yusuf Haramaya University 164
Nanobiosensor (Biochip)
Dr Zekeria Yusuf Haramaya University 165
Types of Nanosensors based on applications
Dr Zekeria Yusuf Haramaya University 166
Dr Zekeria Yusuf Haramaya University 167
Dr Zekeria Yusuf Haramaya University 168
Dr Zekeria Yusuf Haramaya University 169
Dr Zekeria Yusuf Haramaya University 170
Dr Zekeria Yusuf Haramaya University 171
Dr Zekeria Yusuf Haramaya University 172
Dr Zekeria Yusuf Haramaya University 173
Dr Zekeria Yusuf Haramaya University 174
Nanotechnology in Agriculture
Dr Zekeria Yusuf Haramaya University 175
Nanotech Delivery Systems for Pests, Nutrients,
& Plant Hormones
•Nanosensorsdispersed in the field can also detect the
presence of plant viruses and the level of soil
nutrients.
• Nanoencapsulated slow release fertilizers have also
become a trend to save fertilizer consumption, & to
minimize environmental pollution.
•Nanobarcodesand Nanoprocessing could also be
used to monitor the quality of agricultural products.
• Used to study the effect on PGRs especially Auxin*.
Dr Zekeria Yusuf Haramaya University 176
Nanoparticles and Recycling Agricultural Waste
•Incottonindustrycost-effectiveconversionof
cellulosefromwasteplantpartsinto
ethanol*
••Alargeamountofhigh-qualitynanosilicais
producedfromRiceHuskwhichcanbe
furtherutilizedinmakingothermaterialssuch
asglassandconcrete.
Dr Zekeria Yusuf Haramaya University 177
Dr Zekeria Yusuf Haramaya University 178
Dr Zekeria Yusuf Haramaya University 179
Dr Zekeria Yusuf Haramaya University 180
Dr Zekeria Yusuf Haramaya University 181
Dr Zekeria Yusuf Haramaya University 182
Dr Zekeria Yusuf Haramaya University 183
Dr Zekeria Yusuf Haramaya University 184
Nanotechnology in Food
Processing and Packing
Dr Zekeria Yusuf Haramaya University 185
Dr Zekeria Yusuf Haramaya University 186
Dr Zekeria Yusuf Haramaya University 187
Dr Zekeria Yusuf Haramaya University 188
Dr Zekeria Yusuf Haramaya University 189
Dr Zekeria Yusuf Haramaya University 190
Dr Zekeria Yusuf Haramaya University 191
Dr Zekeria Yusuf Haramaya University 192
Dr Zekeria Yusuf Haramaya University 193
Dr Zekeria Yusuf Haramaya University 194
Dr Zekeria Yusuf Haramaya University 195
Dr Zekeria Yusuf Haramaya University 196
Dr Zekeria Yusuf Haramaya University 197
Dr Zekeria Yusuf Haramaya University 198
Dr Zekeria Yusuf Haramaya University 199
Dr Zekeria Yusuf Haramaya University 200
Dr Zekeria Yusuf Haramaya University 201
Dr Zekeria Yusuf Haramaya University 202
Dr Zekeria Yusuf Haramaya University 203
Dr Zekeria Yusuf Haramaya University 204
Dr Zekeria Yusuf Haramaya University 205
Dr Zekeria Yusuf Haramaya University 206
Dr Zekeria Yusuf Haramaya University 207
Dr Zekeria Yusuf Haramaya University 208
Dr Zekeria Yusuf Haramaya University 209
Dr Zekeria Yusuf Haramaya University 210
Dr Zekeria Yusuf Haramaya University 211
Dr Zekeria Yusuf Haramaya University 212
Dr Zekeria Yusuf Haramaya University 213
Dr Zekeria Yusuf Haramaya University 214
Dr Zekeria Yusuf Haramaya University 215
Nanotechnology in Environment
Dr Zekeria Yusuf Haramaya University 216
Dr Zekeria Yusuf Haramaya University 217
Dr Zekeria Yusuf Haramaya University 218
Dr Zekeria Yusuf Haramaya University 219
Dr Zekeria Yusuf Haramaya University 220
Dr Zekeria Yusuf Haramaya University 221
Dr Zekeria Yusuf Haramaya University 222
Dr Zekeria Yusuf Haramaya University 223
Dr Zekeria Yusuf Haramaya University 224
Dr Zekeria Yusuf Haramaya University 225
Dr Zekeria Yusuf Haramaya University 226
Dr Zekeria Yusuf Haramaya University 227
Dr Zekeria Yusuf Haramaya University 228
Impacts of nanotechnology
Dr Zekeria Yusuf Haramaya University 229
Future of Nanotechnology
•Asinbiotechnology,issuesofsafetyonhealth,biodiversity,andenvironment
alongwithappropriateregulationareraisedonnanotechnology.
• However, nanotechnology products such as antibacterial dressings, stain-
resistant fabrics, and suntan lotions are available.
•Dream of automated, centrally controlled agriculture can become reality now.
• Modern agriculture is need of hour because conventional agriculture will not
be able to feed an ever increasing population with changing climate, depleting
resources and shrinking landscape.
Experts says that nanotechnology will likely create the next generation of
billionaires and reshape global business.
Industry Analysts Predict Revenues from Products Incorporating
Nanotechnology to Reach Close to $3 Trillion US Within 10 Years
230Dr Zekeria Yusuf Haramaya University
Dr Zekeria Yusuf Haramaya University 231
Implications of Nanotechnology
Health and safety issues
Nanoparticlescan cause serious
illness or damage human body.
Untraceable destructive weapons
of mass destruction.
Social & Political issues
Creates social strife through
increasing wealth gap
Advisability of increasing scope
of the technology creates political
dilemma
Dr Zekeria Yusuf Haramaya University 232
Nanoethics
Dr Zekeria Yusuf Haramaya University 233
Health and Safety Issues
Dr Zekeria Yusuf Haramaya University 234
•Greatdebateregardingtowhatextentnanotechnologywilleffecthuman
health
•Smallnanoparticlesmayenterthehumanbodybutthehealthimplications
areyetunknown
•Healtheffectscannotbestudiedb/callstudiesaremadeonanimalsnot
humans
•So,difficultyinrelatingreactionstohumans
•Toxicitystudiesusingmiceandratssuggestthatcertainnanomaterialscould
beverytoxic
•Safetyinhandlingofnanoparticles
•Useofimplantingnano-devicesinhumans:i.e.implantingartificialdevices
Nanotechnology'shealthimpact:
a.Nanomedicine;asmedicine
b.Nanotoxicology;exposuretonanomaterials
Medical Issues
•Nanoparticlescan be used as vehicles for efficient
drug delivery to heal, repair damages
• Nanomedicinecould harm the human body rather
than healing it
• Particles such as toxins that can’t be seen or easily
controlled would enter the body
• The materials used for nano-medical technologies
may be toxic
• Transhumanists–changing human nature itself
Dr Zekeria Yusuf Haramaya University 235
Environmental Issues
•Nanopollutiongeneratedbynanodevicescould
bedangerous
•Mightenterhumans,causingunknowneffects
•Wholelifecycleneedstobeevaluatedfor
assessingthehealthhazardsofnanoparticles
•‘GreyGoo’
•Chancesofwipingouttheentirebiosphereby
selfreplicatingnanorobots
•Releaseofnanoparticleswhichmayharmthe
environment
Dr Zekeria Yusuf Haramaya University 236
Societal Issues
•Broader societal impacts and social challenges
• Military and terrorist uses -Unfortunately, as
with nuclear technology, it is far easier to
create destructive uses for nanotechnology
than constructive ones
• Fear of decrease of gap between humans and
robots
• Patent issues
Dr Zekeria Yusuf Haramaya University 237