Nerve Muscle Physiology injury and regeneration

KamkarAeenfar 59 views 50 slides May 03, 2024
Slide 1
Slide 1 of 50
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50

About This Presentation

Physiology of nerve injury


Slide Content

Prasanta Deb
Assistant Professor
Dept. of Human Physiology
M.B.B. College, Agartala

P.Deb 2

Degeneration:
Aftercompletetransactionofthenerve,theperipheralpartsoftheaxons
undergocertaindegenerativechangeswhichareoftencalledWallerian
degeneration.
Degenerationtakesplaceatthreelevels:
•Inthenervecell
•Intheproximalpartofthecutfibreand
•Inthedistalpartofthecutfibre
Degeneration:Changeoccurringintheproximalpartoftheaxonsandalsothe
cellbodiesfollowingsectionofanaxonisknownasretrogradedegeneration.The
changesinthecellbodiesare:
1.Chromatolysis:Nisslgranulesdisappear.Itstartswithin48hoursand
becomesmaximumby15-20days.
2.Golgiapparatus,mitochondriaandneurofibrilsbreakupanddisappear.
3.Thecelldrawsinmorefluid,swellsupandbecomesrounded.
3P.Deb

4.Thenucleusispushedtotheperiphery.Inseverecasesitmaybetotally
extruded,inwhichcase,thenervecellcompletelydiesanddisappears.
Thedegreeofdamageandchromatolysisdependon:
a)Thedistanceoflesionsfromthenervecell-Lesserthedistancegreaterwill
bethedamage.
b)NatureofSection:Ifitisasharpcut,theeffectswillbeless.Butifforcibly
torn,thedamageissevereandoftenthecelldies.
Degeneration in the Proximal part of the cut fibre
Sincethispartremainsconnectedwiththemothercell,degenerationcannotbe
completeunlessthenervecelldies.Ordinarily,degenerationproceeds
centrallyasfarasuptothefirstnodeofRanvierandinmostcases
degenerativechangesmayextenduptoafewinternodeswhenregenerative
changesareinitiatedfromtheendofthecentralstump.Inmoreseverecases,
itmayproceedtoalittlehigher.Thenatureofthisdegenerationandthe
subsequentregenerationissameasinthedistalstumporpart.Regeneration
takesplaceiftheneuronesurvives.
4P.Deb

Degenerationinthedistalpartofthecutfibre
Sincethispartistotallyseparatedfromthemothercell,itdegenerates
completely.Degenerationstartssimultaneouslyinthewholelengthofthefibre
uptoitsterminalarborizationswithin24hoursandiscompletedby3weeks.
Followingdegenerativechangesareseen:
HistologicalChanges:
1.Theneurofibrilsswell,becometortuousandultimatelydisappearandthe
axiscylinderbreaksupintoshortlengths.
2.Themyelinsheathdisintegratesintodropletsoffat.Lecithinsplitsupinto
glycerol,phosphoricacid,fattyacidandcholine.Theyarepartlyremoved
bymacrophagesandpartlywashedoutinthebloodstream.Ifthedamage
beinsidethecentralnervoussystem,nofurtherchangetakesplace.
But if it be in the peripheral nervous system the neurolemmashows the
following changes :
5P.Deb

ThenucleiofSchwanncellmultiplymitoticallyandtheSchwanncell
cytoplasmincreasesinamount.Itstarts4-9daysaftersection.The
macrophagespenetratetheneurolemmaltubesandremovethedebris.The
Schwanntissuegraduallyfillupthewholetubeandtheprocessiscompletedby
threemonths.Fromthecutofthedistalend,theproliferatingSchwanntissue
spreadsupwardstowardthecentralcutendandinthiswaymaybridgeupa
considerablegap(evenupto3cm)betweenthetwocutends.Therateof
progressofthisgrowthis1-2mmperday.Theperipheralneurolemmaltube
shrinkstohalfitsoriginaldiameterin7weeksandmayremainsoforabout18
months.Theabovedegenerativechangesinthedistalcutendofthefibreswere
firstobservedbyWallerandaccordingtohimitisknownasWallerian
degeneration.
DegenerationofNerveendings:
Theframeworkofbothsensoryandmotorendingscanresistdegenerationfor
months.Ifthenervefibrefailtoregenerate,theendingsalsoatrophy.
Transneuronaldegeneration:
Whenneuroneoritsmotorfibredegenerates,theneuronenextinthechainis
oftenfoundtodegeneratealso.Thistakesplaceinspiteofthefactthatthereis
noanatomicalcontinuitythroughthesynapses.
6P.Deb

Itisprobablyanexampleofdisuseatrophy.Inmanyconditions,thistype
ofdegenerationoccurse.g.,
1.Aftersectionoftheopticnerve,thecellsinthelateralgeniculatebody
degenerate.
2.Aftersectionoftheposteriorspinalroot,theposteriorhorncells
degenerate.
3.Inlesionsofthemotorcortexorpyramidaltracts,theanteriorhorncells
maydegenerate.
Thistypeofdegenerationmaybetheunderlyingcauseoftheso-called
Systemdiseasesviz.,Amyotorphiclateralsclerosis,etc.,where
degenerationofanteriorhorncellsfollowsthatofthepyramidaltracts.
7P.Deb

Regeneration:
Regenerationtakesplaceonlyoutsidethecentralnervoussystemwhere
neurolemmaispresent.Presenceofneurolemmais,therefore,essentialforthe
process.Hence,inthecentralnervoussystem,neurolemmabeingabsent,nerve
fibredonotregenerateatall.Thefollowingstepsareseenduringregeneration:
Theaxiscylindergrowsfromthecentralcutendasaroundedsproutand
proceedstowardsthesolidneurolemmalcord.TheproliferatedSchwanntissue
intheperipheralcutendanditsprolongationtowardsthecentralcutend
provideaninfluencewhichguidestheapproachingaxiscylinder.Eachgrowing
fibresplitsupintonumerousneurofibrils(evenupto100),theSchwanncells
disappearandthefibrilsenterthenewlymadeneurolemmaltube(2-3weeks
afterthesection,theinnerwallofthetubemaycontainanumberoffibrils).All
thefibrilsdegenerate,exceptingasingleone,whichgraduallyenlargesand
occupiesthecentralpartofthewholelengthofthetubeproceeding
peripherally.Thedailyrateofgrowthisabout0.25mminthescartissue
betweenthetwocutendsand3-4mmintheperipheralneurolemmaltubes.
8P.Deb

Myelinsheathbeginstoappearinabout15daysandproceedsperipherally
alongthefibreataslowerratethanthegrowingaxiscylinder.
Increaseinthediameterofthefibretakesplaceslowly.Thediameterofthe
fibreislimitedbythesizeoftheneurolemmaltubeandthatoftheparent
nervecell.
Withacleansharpwoundandthecutendsbeinginapposition,somedegree
ofrecoveryusuallytakesplacein6-24months.Foramotornerve,recovery
maybecomplete.Butforamixednerve,itisrarelyso.
Intheregeneratedfibrestheaxiscylinderandmyelinsheatharereducedin
thickness,theintermodaldistanceisalsodiminished.Buttherateof
conductionofnerveimpulsesintheregeneratedfibresremainsthesame.
Completefunctionalregenerationoccursafterhistologicalregeneration-3
weeksincaseofmotornervefibresand5weeksincaseofsensorynerve
fibres.
9P.Deb

P.Deb 10

P.Deb 11
Modern concept of Generation of
Resting Potential

P.Deb 12
Restingmembranepotential(RMP)isthedifferencebetweenelectrical
potentialexistingontheoutsideandinsideofacellatrest.Thisvariesin
differenttypesofcells.
Inanerve,usuallyitis-70mV.Inaskeletalmuscle,itisabout-90mV.In
intestinalsmoothmuscle,itisabout-50mV.
CauseofRestingMembranePotential:
TheintracellularandextracellularconcentrationofionssuchasNa
+
,
K
+
,Cl
-
aredifferent.Also,thepermeabilityofcellmembranetothe
individualionsisalsodifferent.Thesetwofactorsaremainlyresponsible
forthemagnitudeofRMP.
[K
+
]insidethecellis155meq/Land[K
+
]outsidethecellis4meq/L.
AsthecellmembraneisfreelypermeabletoK
+
ions,K
+
tendstomoveout
ofthecellalongtheconcentrationgradient.ButasK
+
movesoutofthe
cell,theinteriorofthecellbecomesnegativelychargedduetolossof
cations.Thiscouldhavebeenprevented-
a.IfNa
+
ionsenteredintothecellbutthecellmembraneisimpermeable
toNa
+
ions.

P.Deb 13
b.Proteinsanionsinsidethecellscouldhavemovedouttoneutralise
intracellularnegativitybuttheyaretoolargetopassthroughthecell
membrane.
c.Cl
-
ionsalsocannotmoveoutofthecellagainstthesteep
concentrationgradient.
So,intracellularnegativitypersists.
ThiswillattracttheoutgoingpositivelychargedK
+
ionsinwardsdue
toelectricalgradient.
Ataparticularelectricalpotential,thesetwoforcesdueto
concentrationandelectricalgradientbalanceeachotherandan
equilibriumisestablished.Thisisknownasthediffusionor
equilibriumpotentialofK
+
.
ThiscanbemathematicallyderivedfromNernstequation,according
towhich
RT [K
+
]
0
E
K= ------------ln_______
FZ [K
+
]
I

P.Deb 14
Where, E
K= Equilibrium potential of K
+
ions
R= Gas Constant
T= Absolute temperature
F= Faraday (96500 Coulombs)
Z= Valencyof K
+
ln= Natural log
[K
+
]
0= K
+
concentration outside the cell
[K
+
]
I= K
+
concentration inside the cell
In contrast to K
+
ions, Na+ ions have electrical gradient and
concentration gradient both directed to the inside of the cell.
From the Nearstequation, we get
E
Na=+65 mV
Similarly, E
Cl= -70mV

P.Deb 15
So, K
+
ions tend to move the RMP to its equilibrium potential (E
K) i.e.,
-90mV, whereas Na
+
ions tend to pull the RMP in the opposite direction
to E
Na
+
, which is +65mV. Similarly Cl
-
ions try to maintain the RMP at
its own equilibrium potential which is -70mV.
Cl
-
ionshaveatendencytomoveoutofthecellbeingrepelledbythe
electronegativecellinteriorwhereasithasatendencytomoveintothe
cellduetoconcentrationgradientdirectedtowardsinsideofthecell.
Normally,thesetwooppositetendenciesalmostexactlybalanceeach
otherandCl
-
ionhasverylittleeffectonRMP.
TheresultantRMPnowdependsonthepermeabilityorconductanceof
theindividualions.
AstheK
+
ionsis10-25timesmorepermeablethanNa
+
ion,theresting
membranepotentialismuchclosertoE
K.ActualRMPstandsat-70
mV.
ItcanbemathematicallyderivedfromtheGoldmanconstant-field
equation.

P.Deb 16
RT P
K[K
+
]
o+P
Na[Na
+
]
o+P
Cl[Cl
-
]
i
RMP = ln
F P
K[K
+
]
i+P
Na[Na
+
]
i+P
Cl[Cl
-
]
o
Where, P stands for permeability, ‘o’ and ‘I’ stand for outside and inside
respectively and third brackets indicate concentration.

P.Deb 17
ItistobenotedthatatRMP,neitherK
+
ionsnorNa
+
ionsareattheir
equilibriumpotential.So,thereismovementofNa
+
ionsintothecelland
K
+
ionsoutofthecell.However,thisdoesnotaltertheintracellularor
extracellularNa
+
andK
+
ionconcentrationsasNa
+
-K
+
-ATPasepumps
constantlypumpoutNa
+
outofthecellandbringK
+
intothecell,thus
restoringionicbalance.
AsmallpartoftheRMPiscontributeddirectlybytheelectrogenicNa
+
-K
+
-
ATPasepump,asitdrivesout3Na
+
ionsfromthecellandbrings2K
+
ions
intothecell,thuscausingslightintracellularnegativity.
Although,thedirectcontributionofNa
+
-K
+
-ATPasepumptoRMPissmall,
ithasafarmoreimportantindirectroleinthegenesisofRMPasitplaysa
pivotalroleinmaintainingconcentrationgradientsofNa
+
andK
+
ions
acrossthecellmembrane.
Donnanmembraneequilibriumresultsinunequaldistributionsofanions
andcationsacrossthecellmembraneduetothepresenceofnon-diffusible
anions(Proteins)asaresultanelectricalpotentialdifferenceissetupin
accordancewithNernstequation.

P.Deb 18
GENERATION OF ACTION POTENTIAL

P.Deb 19
Inrestingstatethenervefibreremainsinpolarizedstateandthe
membranepotentiallieswithin-70mV.Theinsideofthenerveisnegative
andtheoutsideofthenerveispositive.Na
+
concentrationoutsidethe
membraneishigherthanthatofinsidethemembrane.K
+
concentration
insidethemembraneisalsohigherthanthatoftheoutside.K
+
can
permeatethroughthemembraneatrestingstatebutNa
+
cannot
permeate.PermeabilityofNa
+
tomembraneisincreasedonlyafter
excitationandisthefirsteventoftheactionpotential.Theaction
potentialoccursinsuccessivestagesofdepolarization,repolarization,
negativeafterpotentialandpositiveafterpotential.Ithasbeenpostulated
thatinrestingstatecalciumions(Ca
++
)remainboundtotheprotein
throughtheserestingpores.DuringexcitationCa
++
isdislodgedfromits
bindingsiteandthepermeabilitytoNa
+
isincreased.Sothe
depolarizationstartswiththeonsetofNa
+
entryandthusanincreasein
Na
+
conductanceistakenplace.

P.Deb 20

P.Deb 21

P.Deb 22
ThetremendousincreaseinNa
+
conductanceduringthisperiodisknown
asactivationofmembrane.Duetothis,thereversalofpotentialiscaused
withthedevelopmentofpositivityinsidethemembraneandnegativity
outside.Butwiththeincreaseofpositivityinside,furtherentryofNa
+
is
preventedandcalciumbeginstobindwiththeproteinsofthemembrane
pores.Butassoonastheactionpotentialattainsthevoltage
approximately+35mV,K
+
beginstocomeoutfrominsidethemembrane.
Theinsidebecomesnegativeandoutsidebecomespositiveagain.This
stageistherepolarizationphase,K
+
conductanceisincreasedtothe
maximum.ThemechanismunderlyingtheprocessofK
+
conductanceis
mostlyhypotheticalandincreasedpositivityinsidethemembranedueto
Na
+
entryduringdepolarizationphase,allowstheK
+
tocomeoutandthe
restingpotentialisslowlyachieved.Butatthelaterperiodofthisphase
(attheterminationofspikepotential)K
+
conductanceisalloweddown
andthusafewmillisecondsaredelayedinrestoringthemembrane
potential.Thisstateisknownasnegativeafterpotentialwhichhasbeen
describedtobethecauseofincreasedK
+
concentrationoutsidethe
membrane.

P.Deb 23
Withthedisappearanceofthenegative-afterpotential,thoughthe
restingmembranepotentialisachievedyettherestingionicstatusis
notestablished.ItisachievedbytheactiveNa
+
pumpmechanismand
Na
+
beginstocomeoutfrominsidethemembranecreatingnegativity
again.ThepositiveafterpotentialisduetothisprocessofNa
+
diffusion
frominsidetooutsidethemembrane.Thenegativityproduceddueto
activeNa
+
pumpmechanism,causestheK
+
todiffusebacktothe
interiorofthenervefibre.FortheactiveNa
+
andK
+
pumpmechanism
highenergyphosphate(ATP)isrequired.Inthiswayrestingnormal
ionicstatusisestablishedduringtheperiodofpositive-afterpotential.

P.Deb 24

P.Deb 25
PROPERTIES OF SYNAPSE
1.ONE WAY CONDUCTION (BELL-MAGENDIE LAW)
AccordingtoBell-Magendielaw,theimpulsesaretransmittedonlyinone
directioninsynapse,i.e.frompresynapticneurontopostsynaptic
neuron.
2.THESYNAPTICDELAY
Duringthetransmissionofimpulsesviathesynapse,thereisashort
delayintransmission.Itiscalledthesynapticdelay.Itisduetothetime
takenfor:
i.Releaseofneurotransmitter
ii.Movementofneurotransmitterfromaxonterminaltopostsynaptic
membrane.
iii.Actionoftheneurotransmittertoopentheionicchannelsinpost
synapticmembrane.
Thesynapticdelayisoneofthecausesforthelatentperiodofthereflex
activity.

P.Deb 26
3. FATIGUE
Duringcontinuousmuscularactivity,thesynapseformstheseatoffatigue
alongwiththeBetzcellspresentinthemotorareaofthefrontallobeofthe
cerebralcortex.Thefatigueatthesynapseisduetothedepletionof
neurotransmittersubstance,acetylcholine.
Depletionofacetylcholineoccursbytwofactors:
i.Soonaftertheaction,acetylcholineisdestroyedby
acetylcholinesterase.
ii.Duetocontinuousaction,newacetylcholineisnotsynthesized.
Thesetwofactorsleadstolackofacetylcholineresultinginfatigue.
4. SUMMATION
Whenmanypresynapticexcitatoryterminalsarestimulatedsimultaneously
orwhensinglepresynapticterminalisstimulatedrepeatedly,thereis
summationorfusionofeffectsinpostsynapticneuron,i.e.thereisprogressive
increaseintheexcitatorypostsynapticpotential.Itiscalledsummation.
Summationisoftwotypes:

P.Deb 27
i.SpatialSummation:
Itoccurswhenmanypresynapticterminalsarestimulated
simultaneously.
ii.TemporalSummation:
Itoccurswhenonepresynapticterminalisstimulatedrepeatedly.
Thus,bothspatialsummationandtemporalsummationplayan
importantroleinthefacilitationofresponse.
5. ELECTRICAL PROPERTY
TheelectricalpropertiesofsynapsearetheEPSPandIPSP.
Whenactionpotentialcausesincreasedpermeabilityofthe
postsynapticmembranetoallionsviz.,Na
+
,K
+
andCl
-
,thenitresultsin
EPSP(Excitatorypostsynapticpotential)
Whenactionpotentialcausesselectivepermeabilityofthepostsynaptic
membranetoK
+
ions,thenitresultsinIPSP(Inhibitorypostsynaptic
potential)

P.Deb 28
NEURO-MUSCULAR JUNCTION

P.Deb 29
Theskeletalmusclefibresareinnervatedbylarge,myelinnatednervefibres
thatoriginatefromlargemotorneuronsintheanteriorhornsofthespinal
cord.
Eachnerveendingmakeajunction,calledtheneuromuscularjunction,with
themusclefibrenearitsmidpoint.Theactionpotentialinitiatedinthe
musclefibrebythenervesignalstravelsinbothdirectionstowardthe
musclefibreends.
Physiologicanatomyoftheneuromuscularjunction-Themotor
endplate
Theneuromuscularjunctionformalarge,myelinatednervefibretoa
skeletalmusclefibre.Thenervefibreformsacomplexofbranchingnerve
terminalsthatinvaginateintothesurfaceofthemusclefibrebutlieoutside
themusclefibreplasmamembrane.Theentirestructureiscalledthemotor
endplate.ItiscoveredbyoneormoreSchwanncellsthatinsulateitfrom
thesurroundingsfluids.
Theinvaginatedmembraneofthemusclefibremembraneiscalledthe
synapticgutterorsynaptictrough.

P.Deb 30
Thespacebetweentheterminalandthefibremembraneiscalledthe
synapticspaceorsynapticcleft.Thisspaceis20-30nmwide.
Atthebottomofthegutterarenumeroussmallerfoldsofthemuscle
membranecalledsubneuralclefts,whichgreatlyincreasethesurfaceareaat
whichthesynaptictransmittercanact.
IntheaxonterminalnumerousmitochondriasupplyATPforthesynthesis
ofneurotransmitteracetylcholine.
Theacetylcholineinturnexcitesthemusclefibremembrane.Acetylcholine
issynthesizedinthecytoplasmofaxonterminalsbutareabsorbedrapidlyin
tomanysmallsynapticvesiclesabout300,000intheterminalofasingleend
plate.
Inthesynapticspacearelargequantitiesoftheenzymeacetylcholine
esterase,whichdestroysacetylcholineinafewmillisecondsafterithasbeen
releasedfromthesynapticvesicles.

P.Deb 31
Mechanismoftransmissionofnerveimpulseacrossthe
neuromuscularjunction
Whenanerveimpulsereachestheneuromuscularjunction,about125
vesiclesofacetylcholineisreleasedfromtheterminalsintothesynapticspace.
Ontheinsidesurfaceoftheneuralmembranearelineardensebars.Toeach
sideofeachdensebarareproteinparticlesthatpenetratetheneural
membrane,thesearevoltagegatedcalciumchannels.
Whenactionpotentialspreadsovertheterminals,thesechannelsopenand
allowcalciumionstodiffusefromthesynapticspacetotheinteriorofthe
nerveterminal.Thecalciumions,inturn,arebelievedtoexertanattractive
influenceontheacetylcholinevesicles,drawingthemtotheneuralmembrane
adjacenttothedensebars.Thevesiclesthenfusewiththeneuralmembrane
andemptytheiracetylcholineintothesynapticspacebytheprocessof
exocytosis.
Attheneckofthesubneuralcleftsthereexiststheacetylcholinereceptorsin
themusclefibremembrane.

P.Deb 32

P.Deb 33
Theseareacetylcholine-gatedionchannels,andtheyarelocatedalmost
entirelynearthemouthsofthesubneuralcleftslyingimmediatelybelow
thedensebarareas,whereacetylcholineisemptiedintothesynapticspace.
Thereceptorisaproteincomplex(MW-275,000),thecomplexis
composedoffivesubunitsproteins,twoalphaproteinsandoneeachof
beta,delta,andgammaproteins.Theseproteinmoleculespenetrateallthe
waythroughthemembrane,lyingsidebysideinacircletoformatubular
channel.
Thechannelremainsconstricteduntiltwoacetylcholinemoleculesattach
respectivelytothetwoalphasubunitproteins.Thiscausesa
conformationalchangethatopensthechannel.
Theopenedacetylcholinechannelhasadiameterof0.65nm,whichis
largeenoughtoallowtheimportantpositiveions–Na
+
,K
+
andCa
++
to
moveeasilythroughtheopening.

P.Deb 34

P.Deb 35
WhereasthenegativeionssuchasCl
-
ionscannotpassthroughbecauseof
strongnegativechargesinthemouthofthechannelthatrepelthesenegative
ions.
InpracticefarmoreNa
+
ionsmovethroughtheacetylcholinechannelsthan
anyotherionsduetotworeasons:
1.TheextracellularconcentrationofNa
+
ionsismore,and
2.Theinsideiselectronegative(-70to-90mV)whicheasilyallowstheNa
+
ionstoenterandatthesametimepreventstheeffluxoftheK
+
ionsto
outside.
Thiscreatesalocalpositivepotentialchangeinsidethemusclefiber
membrane,calledtheend-platepotential.
Inturn,thisendplatepotentialinitiatesanactionpotentialthatspreads
alongthemusclemembraneandthuscausesmusclecontraction.
Theacetylcholine,oncereleasedintothesynapticspace,continuesto
activatetheacetylcholinereceptorsaslongastheacetylcholinepersistsin
thespace.

P.Deb 36
Acetylcholine Receptor

P.Deb 37
Acetylcholineisremovedbytwomeans-
1.Mostoftheacetylcholineisdestroyedbytheacetylcholinesterase
enzymepresentinthesynapticspaceremainsattachedtothefine
connectivetissues.
2.Asmallamountofacetylcholinediffusesoutofthesynapticspaceandis
thennolongeravailabletoactonthemusclefibremembrane.

P.Deb 38
What is Reflex ?
Itistheinvoluntaryorautonomicresponseelicitedbyspecificstimulusof
thresholdintensitywiththeinvolvementofCNS.
ReflexArc:
Itisthepathwaythroughwhichanyreflexactionismediated.
TheComponentsofreflexarcareasfollows:
i.Receptor:Thisdetectsthechangeofinternalorexternalenvironmentand
transmitstheimpulsetocenter.
ii.Afferent(sensory)nerve-Itcarriestheimpulsefromreceptortocenter.
iii.Highercenters-ItisthepartofCNSwhereafferentlimbendsandeither
synapsesdirectlywithefferentmotorneuronorestablishconnectionwith
theefferentneuronviainterneurones.
iv.Efferent(Motor)nerve-Itcarriestheefferentimpulsesfromthecentreto
theefferentorgan.
v.Efferentorgan–Thesearebasicallymusclesorglandswhichshowsthe
reflexaction.

P.Deb 39
Classification of reflexes :
a.Depending on inborn or acquired : It is of two types-
i. Unconditioned reflex : These reflexes are present since birth i.e. inborn.
Example : Salivation after taking food, knee jerk etc.
ii. Conditioned reflex : These are not present from birth but acquired in later life
on the basis of past experiences through conditioning and learning.
Example : Salivation by seeing tasty food the taste of which is known.
b. Depending on the number of synapses present in the reflex arc :
It is of two types :
i.Monosynaptic reflex :
When there is only one synapse present in the reflex arc it is known as
monosynaptic
reflex. Example : Knee jerk, Ankle jerk etc.

P.Deb 40
ii.Polysynaptic reflex :
When more than one synapse is present in the reflex arc it is known as
polysynaptic reflex.
Example : Withdrawlreflex i.e., protective reflex e.g. automatic
withdrawlof limb if it comes in contact with hot object.
C. Physiological Classification : It is of two types :
i.Extensor reflex :
These reflexes are responsible for extensor movement of limbs at joints.
Stretch reflexes are extensor reflexes. These are responsible for muscle
tone and posture.
ii. Flexor reflexes : These are reflexes which cause flexion of the joints in
response to nociceptive(pain) stimuli. Withdrawlreflexes are the example
of flexor reflex.
D. Functional classification : are of two types-
i.Somatic reflex : It involves the somatic nervous system. Example-Knee
jerk
ii.Autonomic reflex : It involves the autonomic nervous system. Example-
Sino-aortic reflex.

P.Deb 41
E.ClinicalClassification:Itisoffourtypes:
i.Superficialreflexes:Theseareinitiatedbystimulatingappropriate
receptorsofskinandmucousmembrane.Theseareusuallypolysynaptic.
Example:Planterreflex,cornealreflexetc.
ii.Deepreflexes:Theseareelicitedonstrokingthetendon.Theseare
basicallystretchreflexes.Example:Kneejerk,anklejerketc.
iii.Visceralreflexes:Thesearereflexesinwhichpartofthereflexarcisformed
byautonomicnervoussystem.Example-Papillaryreflex,Carotidsinus
reflexetc.
iv.Pathologicalreflexes:Thesearenotfoundnormally.Elicitedincaseof
diseasedstate.

P.Deb 42

P.Deb 43

P.Deb 44

P.Deb 45

P.Deb 46

P.Deb 47

P.Deb 48
ReflexAction:
Reflexactionisaninvoluntaryeffectorresponseduetoasensorystimulus.
Itisthebasicphysiologicalunitofintegrationintheneuralactivity.
UnconditionedReflex:Unconditionedreflexesareinborn.Thenervepaths
arefixedfromtheverybirth.Anymaterialalterationisconsideredas
disease.Hence,examinationofreflexesisagreathelpinthediagnosisof
variousdiseases.
ConditionedReflex:Theconditionedreflexesareacquiredafterbirth.Such
reflexesneedpreviouslearning,training,orconditioning.Theexampleisthe
secretionofsalivabythesight,smell,thoughtorhearingofaknownedible
substance.
Cerebralcortexisresponsiblefortheestablishmentofconditionedreflexes
throughthedevelopmentofnewconnectionwithdifferentsubcortical
centres.Forestablishmentofconditionedresponseorreflexthroughspecific

P.Deb 49
conditionedstimuli,specificcorticalandsubcorticalcentresare
responsibleforitsdevelopment.Asforexample,fortheproductionof
conditionedsalivationreflexes,thecorticaltastecentresaswellasthe
visualandauditoryareasalongwithitssubcorticalcentresareresponsible
iftheconditionedstimulusaretheringingofbellandgivingoffood.

P.Deb 50
THANK YOU
Tags