NH3-symmetry1.ppt Rotational and Translational Motion operation

SURAJITDASBAURI 72 views 54 slides Aug 03, 2024
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

Rotational and Translational Motion operation


Slide Content

Dr. S. M. Condren
Chapter 4
Molecular Symmetry

Dr. S. M. Condren

Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Identity
•Proper axis of rotation
•Mirror planes
•Center of symmetry
•Improper axis of rotation

Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
• Identity => E

Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Proper axis of rotation => C
n
–where n = 2, 180
o
rotation
– n = 3, 120
o
rotation
– n = 4, 90
o
rotation
– n = 6, 60
o
rotation
– n = , (1/)
o
rotation
•principal axis of rotation, C
n

Dr. S. M. Condren
2-Fold Axis of Rotation

Dr. S. M. Condren
3-Fold Axis of Rotation

Dr. S. M. Condren
Rotations for a Trigonal Planar Molecule

Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
Mirror planes =>

h => mirror plane perpendicular to a
principal axis of rotation

v
=> mirror plane containing principal
axis of rotation

d => mirror plane bisects dihedral angle made
by the principal axis of rotation and two
adjacent C2 axes perpendicular to principal
rotation axis

Dr. S. M. Condren
Mirrors

v 
v
Cl Cl

h
I 
d

d
Cl Cl

Dr. S. M. Condren
Rotations and Mirrors in a Bent
Molecule

Dr. S. M. Condren
Benzene Ring

Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Center of symmetry => i

Dr. S. M. Condren
Center of Inversion

Dr. S. M. Condren
Inversion vs. C
2

Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Improper axis of rotation => S
n
–rotation about n axis followed by inversion
through center of symmetry

Dr. S. M. Condren
Improper Rotation in a Tetrahedral
Molecule

Dr. S. M. Condren
S
1
and S
2
Improper Rotations

Dr. S. M. Condren
Successive C
3
Rotations on
Trigonal Pyramidal Molecule

Dr. S. M. Condren
Linear Molecules

Dr. S. M. Condren
Selection of
Point Group from Shape
•first determine shape using Lewis Structure
and VSEPR Theory
•next use models to determine which
symmetry operations are present
•then use the flow chart Figure 3.9, Pg. 81
text to determine the point group

Dr. S. M. Condren

Dr. S. M. Condren
Decision Tree

Dr. S. M. Condren
Selection of
Point Group from Shape
1.determine the highest axis of rotation
2.check for other non-coincident axis of
rotation
3.check for mirror planes

Dr. S. M. Condren
H
2
O and NH
3

Dr. S. M. Condren

Dr. S. M. Condren

Dr. S. M. Condren
Geometric Shapes

Dr. S. M. Condren
Orbital Symmetry, p
z
C
2v
z E + X(E) = +1
-+
+ C
2
(z)
x
- +- X(C
2(z)) = +1
y 
v(xz)

- X(
v(xz)
) = +1

v(yz) +
- X(
v(xz)
) = +1

Dr. S. M. Condren
Orbital Symmetry, p
y
C
2v

+
-
+
-
-
+
-
+
+
-
z
E
x
y
X(E) = +1
C2(z)
X(C
2(z)
) = -1

v(xz)
X(
v(xz)
) = -1
X(
v(xz)
) = +1

v(yz)

Dr. S. M. Condren
Orbital Symmetry, p
x
C
2v

- +
-+
+ -
- +
+ -
z
x
y
E
X(E) = +1
C
2(z)
X(C
2(z)
) = -1

v(xz)

v(yz)
X(
(xz)) = +1
X(
v(xz)) = -1

Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
z
yo o
H H H H
x 
v(xz)
“asymmetric” => -1

Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
z
o
y H H
x o
H H

v(yz)
“symmetric” => +1

Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
z
y C
2(z)
x
O
H H
“asymmetric” = - 1

Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
Representation:


E C
2(z)

v(xz) 
v(yz)

3 +1 -1 -1 +1

Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O



H
a H
b

 - movement out of plane towards observer
 - movement out of plane away from observer
a,b - labeling to distinguish hydrogens before and after
symmetry operations

Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O E O



H
a H
b


H
a H
b



+1

Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O C
2z O



H
a
H
b


H
b
H
a



+1

Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O 
v(xz) O



H
a H
b


H
b H
a



x -1

Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O 
v(yz) O



H
a H
b


H
a H
b



-1

Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
Representation


E C
2(z)

v(xz) 
v(yz)

4 +1 +1 -1 -1

Dr. S. M. Condren
Water, C
2v
Point Group
Representations:
Rotation


E C
2(z)

v(xz) 
v(yz)

4 +1 +1 -1 -1

Dr. S. M. Condren
Water, C
2v
Point Group
Representation:
Translation


EC
2(z)

v(xz)

v(yz)

1 +1+1+1+1 T
z

2 +1-1+1-1 T
x

3
+1-1-1+1 T
y

Dr. S. M. Condren
Water, C
2v
Point Group
Representation:
Rotation


EC
2(z)

v(xz)

v(yz)

4 +1+1-1-1 R
z

5 +1-1+1-1 R
y

6
+1-1-1+1 R
x

Dr. S. M. Condren
Water, C
2v
Point Group
Character Table


EC
2(z)
v(xz) 
v(yz)
A
1+1+1+1+1 T
z 
1
A
2+1+1-1-1 R
z
4
B
1 +1-1+1-1 R
y, T
x 
2 , 
5
B
2 +1-1-1+1 R
x,T
y 
3, 
6

Dr. S. M. Condren

Dr. S. M. Condren
Vibrational Modes in CO
2
For linear molecules: 3N - 5 IR fundamentals

Dr. S. M. Condren
Vibrational Modes in SO
2
For non-linear molecules: 3N - 6 IR fundamentals

Dr. S. M. Condren
Vibration Modes for SO
3
For non-linear molecules: 3N - 6 IR fundamentals

Dr. S. M. Condren
Vibrational Modes for CH
4
For non-linear molecules: 3N - 6 IR fundamentals

Dr. S. M. Condren
Vibrational Modes for [PtCl
4
]
-2
For non-linear molecules: 3N - 6 IR fundamentals

Dr. S. M. Condren
Enantiomer Pairs

Dr. S. M. Condren
Enantiomer Pairs

Dr. S. M. Condren
Polarimeter
Tags