NH3-symmetry1.ppt Rotational and Translational Motion operation
SURAJITDASBAURI
72 views
54 slides
Aug 03, 2024
Slide 1 of 54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
About This Presentation
Rotational and Translational Motion operation
Size: 977.94 KB
Language: en
Added: Aug 03, 2024
Slides: 54 pages
Slide Content
Dr. S. M. Condren
Chapter 4
Molecular Symmetry
Dr. S. M. Condren
Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Identity
•Proper axis of rotation
•Mirror planes
•Center of symmetry
•Improper axis of rotation
Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
• Identity => E
Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Proper axis of rotation => C
n
–where n = 2, 180
o
rotation
– n = 3, 120
o
rotation
– n = 4, 90
o
rotation
– n = 6, 60
o
rotation
– n = , (1/)
o
rotation
•principal axis of rotation, C
n
Dr. S. M. Condren
2-Fold Axis of Rotation
Dr. S. M. Condren
3-Fold Axis of Rotation
Dr. S. M. Condren
Rotations for a Trigonal Planar Molecule
Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
Mirror planes =>
h => mirror plane perpendicular to a
principal axis of rotation
v
=> mirror plane containing principal
axis of rotation
d => mirror plane bisects dihedral angle made
by the principal axis of rotation and two
adjacent C2 axes perpendicular to principal
rotation axis
Dr. S. M. Condren
Mirrors
v
v
Cl Cl
h
I
d
d
Cl Cl
Dr. S. M. Condren
Rotations and Mirrors in a Bent
Molecule
Dr. S. M. Condren
Benzene Ring
Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Center of symmetry => i
Dr. S. M. Condren
Center of Inversion
Dr. S. M. Condren
Inversion vs. C
2
Dr. S. M. Condren
Symmetry Elements and
Symmetry Operations
•Improper axis of rotation => S
n
–rotation about n axis followed by inversion
through center of symmetry
Dr. S. M. Condren
Improper Rotation in a Tetrahedral
Molecule
Dr. S. M. Condren
S
1
and S
2
Improper Rotations
Dr. S. M. Condren
Successive C
3
Rotations on
Trigonal Pyramidal Molecule
Dr. S. M. Condren
Linear Molecules
Dr. S. M. Condren
Selection of
Point Group from Shape
•first determine shape using Lewis Structure
and VSEPR Theory
•next use models to determine which
symmetry operations are present
•then use the flow chart Figure 3.9, Pg. 81
text to determine the point group
Dr. S. M. Condren
Dr. S. M. Condren
Decision Tree
Dr. S. M. Condren
Selection of
Point Group from Shape
1.determine the highest axis of rotation
2.check for other non-coincident axis of
rotation
3.check for mirror planes
Dr. S. M. Condren
H
2
O and NH
3
Dr. S. M. Condren
Dr. S. M. Condren
Dr. S. M. Condren
Geometric Shapes
Dr. S. M. Condren
Orbital Symmetry, p
z
C
2v
z E + X(E) = +1
-+
+ C
2
(z)
x
- +- X(C
2(z)) = +1
y
v(xz)
- X(
v(xz)
) = +1
v(yz) +
- X(
v(xz)
) = +1
Dr. S. M. Condren
Orbital Symmetry, p
y
C
2v
+
-
+
-
-
+
-
+
+
-
z
E
x
y
X(E) = +1
C2(z)
X(C
2(z)
) = -1
v(xz)
X(
v(xz)
) = -1
X(
v(xz)
) = +1
v(yz)
Dr. S. M. Condren
Orbital Symmetry, p
x
C
2v
- +
-+
+ -
- +
+ -
z
x
y
E
X(E) = +1
C
2(z)
X(C
2(z)
) = -1
v(xz)
v(yz)
X(
(xz)) = +1
X(
v(xz)) = -1
Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
z
yo o
H H H H
x
v(xz)
“asymmetric” => -1
Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
z
o
y H H
x o
H H
v(yz)
“symmetric” => +1
Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
z
y C
2(z)
x
O
H H
“asymmetric” = - 1
Dr. S. M. Condren
Water, C
2v
Point Group
Translational motion in y
Representation:
E C
2(z)
v(xz)
v(yz)
3 +1 -1 -1 +1
Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O
H
a H
b
- movement out of plane towards observer
- movement out of plane away from observer
a,b - labeling to distinguish hydrogens before and after
symmetry operations
Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O E O
H
a H
b
H
a H
b
+1
Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O C
2z O
H
a
H
b
H
b
H
a
+1
Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O
v(xz) O
H
a H
b
H
b H
a
x -1
Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
z
O
v(yz) O
H
a H
b
H
a H
b
-1
Dr. S. M. Condren
Water, C
2v
Point Group
Rotation about z axis
Representation
E C
2(z)
v(xz)
v(yz)
4 +1 +1 -1 -1
Dr. S. M. Condren
Water, C
2v
Point Group
Representations:
Rotation
E C
2(z)
v(xz)
v(yz)
4 +1 +1 -1 -1
Dr. S. M. Condren
Water, C
2v
Point Group
Representation:
Translation
EC
2(z)
v(xz)
v(yz)
1 +1+1+1+1 T
z
2 +1-1+1-1 T
x
3
+1-1-1+1 T
y
Dr. S. M. Condren
Water, C
2v
Point Group
Representation:
Rotation
EC
2(z)
v(xz)
v(yz)
4 +1+1-1-1 R
z
5 +1-1+1-1 R
y
6
+1-1-1+1 R
x
Dr. S. M. Condren
Water, C
2v
Point Group
Character Table
EC
2(z)
v(xz)
v(yz)
A
1+1+1+1+1 T
z
1
A
2+1+1-1-1 R
z
4
B
1 +1-1+1-1 R
y, T
x
2 ,
5
B
2 +1-1-1+1 R
x,T
y
3,
6
Dr. S. M. Condren
Dr. S. M. Condren
Vibrational Modes in CO
2
For linear molecules: 3N - 5 IR fundamentals
Dr. S. M. Condren
Vibrational Modes in SO
2
For non-linear molecules: 3N - 6 IR fundamentals
Dr. S. M. Condren
Vibration Modes for SO
3
For non-linear molecules: 3N - 6 IR fundamentals
Dr. S. M. Condren
Vibrational Modes for CH
4
For non-linear molecules: 3N - 6 IR fundamentals
Dr. S. M. Condren
Vibrational Modes for [PtCl
4
]
-2
For non-linear molecules: 3N - 6 IR fundamentals