nice sexy slide syllabus for digital logic by sarina barahi

kaustuvarchive 36 views 28 slides Jul 18, 2024
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

Aabid ali mansoor


Slide Content

Digital Logic Compiled and Presented by: Er.Sarina Barahi 1

Theory:100 marks Internal Marks:20 marks Attendance Assignment Class performance ADT Final assessment Final semester exam: 80 marks Marks Distribution : Total :150 marks Practical: 50 marks Lab report Viva Attendance MCQ 2

Course Objective: To introduce basic principles of digital logic design, its implementation and applications. 1. Introduction (3 hours) 1.1. Definitions for Digital Signals 1.2. Digital Waveforms 1.3. Digital Logic 1.4. Moving and Storing Digital Information 1.5. Digital Operations 1.6. Digital Computer 1.7. Digital Integrated Circuits 1.8. Digital IC Signal Levels 1.9. Clock wave form 1.10. Coding 1.10.1. ASCII Code 1.10.2. BCD 1.10.3. The Excess – 3 Code 1.10.4. The Gray Code Digital Logic(EX 502)Syllabus 3

2. Digital Logic (1 hours) 2.1. The Basic Gates – NOT, OR, AND 2.2. Universal Logic Gates – NOR, NAND 2.3. AND‐OR‐INVERT Gates 2.4. Positive and Negative Logic 2.5. Introduction to HDL 3. Combinational Logic Circuits (5 hours) 3.1. Boolean Laws and Theorems 3.2. Sum‐of‐Products Method 3.3. Truth Table to Karnaugh Map 3.4. Pairs, Quads, and Octets 3.5. Karnaugh Simplifications 3.6. Don’t Care Conditions 3.7. Product‐of‐Sums Method 3.8. Product‐of‐Sums Simplification 3.9. Hazards and Hazard Covers 3.10. HDL Implementation Models Contd.. 4

4. Data Processing Circuits (5 hours) 4.1. Multiplextures 4.2. Demultiplextures 4.3. Decoder 4.4. BCD‐to‐Decimal Decoders 4.5. Seven‐Segment Decoders 4.6. Encoder 4.7. Exclusive‐OR Gates 4.8. Parity Generators and Checkers 4.9. Magnitude Comparator 4.10. Read‐Only Memory 4.11. Programmable Array Logic 4.12. Programmable Logic Arrays 4.13. Troubleshooting with a Logic Probe 4.14. HDL Implementation of Data Processing Circuits Contd.. 5

5. Arithmetic Circuits (5 hours) 5.1. Binary Addition 5.2. Binary Subtraction 5.3. Unsigned Binary Numbers 5.4. Sign‐Magnitude Numbers 5.5. 2’s Complement Representation 5.6. 2’s Complement Arithmetic 5.7. Arithmetic Building Blocks 5.8. The Adder‐ Substracter 5.9. Fast Adder 5.10. Arithmetic Logic Unit 5.11. Binary Multiplication and Division 5.12. Arithmetic Circuits Using HDL Contd.. 6

6. Flip Flops (5 hours) 6.1. RS Flip‐Flops 6.2. Gated Flip‐Flops 6.3. Edge‐Triggered RS Flip‐Flops 6.4. Edge Triggered D Flip‐Flops 6.5. Edge Triggered J K Flip‐Flops 6.6. Flip‐Flop Timing 6.7. J K Mater‐ Slave Flip‐Flops 6.8. Switch Contacts Bounds Circuits 6.9. Various Representation of Flip‐Flops 6.10. Analysis of Sequential Circuits Contd.. 7

7. Registers (2 hours) 7.1. Types of Registers 7.2. Serial In – Serial Out 7.3. Serial In – Parallel Out 7.4. Parallel In – Serial Out 7.5. Parallel In – Parallel Out 7.6. Applications of Shift Registers 8. Counters (5 hours) 8.1. Asynchronous Counters 8.2. Decoding Gates 8.3. Synchronous Counters 8.4. Changing the Counter Modulus 8.5. Decade Counters 8.6. Presettable Counters 8.7. Counter Design as a Synthesis Problem 8.8. A Digital Clock Contd.. 8

9. Sequential Machines (8 hours) 9.1. Synchronous machines 9.1.1. Clock driven models and state diagrams 9.1.2. Transition tables, Redundant states 9.1.3. Binary assignment 9.1.4. Use of flip‐flops in realizing the models 9.2. Asynchronous machines 9.2.1. Hazards in asynchronous system and use of redundant branch 9.2.2. Allowable transitions 9.2.3. Flow tables and merger diagrams 9.2.4. Excitation maps and realization of the models Contd.. 9

10. Digital Integrate Circuits (4 hours) 10.1. Switching Circuits 10.2. 7400 TTL 10.3. TTL parameters 10.4. TTL Overvew 10.5. Open Collecter Gates 10.6. Three‐state TTL Devices 10.7. External Drive for TTL Lods 10.8. TTL Driving External Loads 10.9. 74C00 CMOS 10.10. CMOS Characteristics 10.11. TTL‐ to –CMOS Interface 10.12. CMOS‐ to‐ TTL Interface Contd.. 10

11. Applications (2 hours) 11.1. Multiplexing Displays 11.2. Frequency Counters 11.3. Time Measurement Contd.. 11

1. Digital Principles and applications(7 th Edition) -Donald P. Leach,Albert Paul Malvino,Goutam Saha 2. Digital Design(4 th Edition) - M.Morris Mano,Michael D.Ciletti 3. Digital Fundamentals(8 th Edition) -Floyd and Jain References: 12

Number System 1. Decimal number system (base or radix 10) uses 10 digits i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 2. Binary number system (radix 2) uses only 2 different symbols to represent number i.e., 0 and 1. 3. Octal number system (base 8) uses 8 different symbols i.e., 0, 1, 2, 3, 4, 5, 6, 7 4. Hexadecimal number system (base 16) uses 16 different symbols. The first 10 digits is same as in decimal number system and A, B, C, D, E, and F are used for digits 10, 11, 12, 13, 14, and 15 respectively. CHAPTER 1 INTRODUCTION 13

Decimal Binary Octal Hexadecimal 0000 1 0001 1 1 2 0010 2 2 3 0011 3 3 4 0100 4 4 5 0101 5 5 6 0110 6 6 7 0111 7 7 8 1000 10 8 9 1001 11 9 10 1010 12 A 11 1011 13 B 12 1100 14 C 13 1101 15 D 14 1110 16 E 15 1111 17 F 14

1. (25.625) 10 = (?) 2 Ans : (11001.101) 2 2. (10.0101) 2 =(?) 16 [2072 Chaitra ] Ans : (2.5) 16 3. (37.42) 8 =(?) 10 Ans : =(31.53125) 10 4. (45.3125) 8 = (?) 2 Ans : (100101.011001010101) 2 5. (110110111.101011) 2 =(?) 16 Ans = (1B7.AC) 16 6. (C20.B5) 16 = (?) 8 Ans = (6040.552) 8 7. Convert 27.432 decimal number to binary. [2074 Chaitra ] Ans = (11011.0110) 2 Base convertion 15

each decimal digits is represented by binary code of four bits. BCD for 0 to 9 is same as binary. Decimal BCD 0 0000 1 0001 9 1001 10 0001 0000 15 0001 0101 100 0001 0000 0000 Binary-Coded Decimal (BCD) 16

Merits: easy to encode and decode decimals into BCD and vice versa. simple to implement a hardware algorithm for the BCD converter. useful in digital systems whenever decimal information is given either as inputs or displayed as outputs. Demerits: For integers greater than 9, BCD occupies more space than the corresponding binary. For example, Decimal : 13 Binary : 1101 BCD code : 0001 0011 require a complex design of ALU than binary number system. 17

ASCII Code American Standard Code for Information Interchange. alpha-numerical code used in computers and electronic equipments. General letters/numbers ASCII(Decimal) 0-9 48-57 A-Z 65-90 a-z 97-122 EBCDIC as Alphanumeric Code stands for Extended Binary Coded Decimal Interchange Code. 8 bit alphanumeric code 18

Excess-3 Code(Xs-3 code) 4-bit code sometimes used with binary-coded decimal(BCD) numbers. To convert any decimal number into its excess-3 form, we have to add 3 to each decimal digit, and then convert the sum to a BCD number. Example: Convert 29 to an excess-3 code. 2+3=5 0101 9+3=12 1100 So, (29) 10 =(01011100) Excess -3 code 19

Gray code is unweighted and is not an arithmetic code. In gray code, the bits are arranged in such a way that it changes by only one bit as it sequences from one number to next. Binary Gray Code 000 000 001 001 010 011 011 010 100 110 The Gray Code 20

Keep MSB of gray code same as MSB of binary code. Going from left to right, add adjacent pairs of binary code to get next gray code bit. Discard any carries. Binary to gray code conversion 21

So, (10110) 2 =(11101 )gray code 22

Gray to binary conversion Keep MSB of binary code same as of gray code. Add each binary code generated to the gray code bit in the next adjacent. Discard any carries. 23

Convert 110111 gray code to binary Gray 1 1 0 1 1 1 + + + + + Binary 1 0 0 1 0 1 So, (110111) gray code =(100101) 2 24

Find binary, hexadecimal and BCD equivalents of (45.3125) 10. (603.25) 8 = (?) BCD (1110) gray =(?) BCD [2073 Shrawan ] (1430) 10 =(?) Excess-3 [2073 Shrawan ] (101001001) 2 =(?) gray [2072 Chaitra ] (93) 10 =(?) Excess-3 [2072 Chaitra ] What will be the BCD,Excess-3 and Gray code for decimal number 15? [2071 Chaitra ] Problems 25

Digit position of number represents a specific weight Positionally weighted Ex: decimal,binary,octal,hexadecimal etc. Non-Weighted codes Digit position of number does not represents a specific weight Positionally unweighted Ex: excess-3 code, gray code etc. Weighted codes 26

Question Describe in your own words the characteristics of an analog signal and a digital signal. What are the advantage of digital system over analog signal? 27

THANK YOU!!!! 28
Tags