Ondas mecánicas

8,830 views 25 slides Apr 30, 2013
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

Se describe las matemáticas de las ondas mecánicas


Slide Content

C
A
R
R
E
R
A
D
E
I
N
G
E
N
I
E
R
Í
A
I
N
D
U
S
T
R
I
A
L
F
A
C
U
L
T
A
D
D
E
I
N
G
E
N
I
E
R
Í
A
Y
A
R
Q
U
I
T
E
C
T
U
R
A
Física 2
Departamento de Ciencias
Mg. Yuri Milachay Vicente
[email protected]
Ondas mecánicas. Ondas periódicas.
Velocidad y aceleración.
Semana 5
Ondas mecánicas. Ondas sonoras

30/04/13 Física 2 / Yuri Milachay2
Objetivos
•Al finalizar la sesión, el estudiante:
•explica la cinemática de las ondas mecánicas,
•aplica la propiedad de la interferencia de las
ondas para deducir las ecuaciones de las ondas
estacionarias, y
•describe una onda sonora, calculando su
rapidez de propagación en diferentes medios.

30/04/13 Física 2 / Yuri Milachay3
Puente en la ciudad de Kobe
(Terremoto del año 1995)

30/04/13 Física 2 / Yuri Milachay4
Despejando dudas…
•¿Qué forma tiene el perfil del puente
colapsado?
•¿Qué tipo de movimiento pudo haber sido el
que produjo una caída del puente hacia el
costado?
•¿Qué tipo de movimiento pudo haber sido el
que produjo el colapso del puente dejando un
perfil como el que se muestra?

30/04/13 Física 2 / Yuri Milachay5
UPN_FIS2_S05_SIDEA_REC01_terremotos

30/04/13 Física 2 / Yuri Milachay6
Tipos de ondas mecánicas
•Una onda mecánica es una perturbación que viaja por el material
o sustancia que es el medio. Al desplazarse la perturbación, las
moléculas del medio se desplazan de varias formas alrededor de
su posición de equilibrio. Las ondas transportan energía.

30/04/13 Física 2 / Yuri Milachay7
Ondas periódicas
•Si la fuente de la perturbación
realiza un MAS, se produce una
onda viajera, de tipo senoidal,
que se mueve hacia la derecha
sobre la cuerda.
•Las magnitudes características
del movimiento ondulatorio son:
•Periodo (T), Amplitud (A)
•Frecuencia (f=1/T), Longitud
de onda (λ)
•La velocidad de propagación de
la onda senoidal es igual a
v fl=
Longitud de onda
UPN_FIS2_S05_SIDEA_REC02_generador_ondas
λ
Longitud de onda

30/04/13 Física 2 / Yuri Milachay8
Ejercicios
•Se llama ultrasonido a las
frecuencias arriba de la gama
que puede detectar el oído
humano. Se usan para
producir imágenes al
reflejarse en las superficies.
En una exploración típica de
ultrasonido, las ondas viajan
con una rapidez de 1 500
m/s. Para obtener una
imagen detallada, la longitud
de onda no debe ser mayor
que 1,0 mm. ¿Qué frecuencia
se requiere?
f vl=
61500m sv
f 1,5 10 Hz
0,0010ml
= = = ´

30/04/13 Física 2 / Yuri Milachay9
( , ) ( )y x t f x vt= -
Descripción matemática de una
onda
•El pulso de onda se propaga con velocidad constante (v) en el
medio uniforme.
•La amplitud del pulso es variable con respecto a la posición (x) y
se representa como una función de f(x; t).
•Al cabo de cierto instante, el pulso se ha desplazado cierta
distancia, por lo que su ecuación será

30/04/13 Física 2 / Yuri Milachay10
•La función de onda de una onda
senoidal que se desplaza de
izquierda a derecha tiene la
siguiente expresión
•Donde,
"w es la frecuencia angular
•k es el número de onda
y(x,t) A cos (k x t)w= -
2
k
p
l
=
2
T
p
w=
Matemática de una onda

30/04/13 Física 2 / Yuri Milachay11
30/04/13 Jorge Moy, Yuri Milachay 11
Ecuación de onda
y(x,t) Asen(kx t)w= ±
Si es - la onda se propaga hacia la derecha
Si es + la onda se propaga hacia la izquierda
Amplitud
Número de onda (rad/m)
Frecuencia angular
(rad/s)

30/04/13 Física 2 / Yuri Milachay12
( , ) cos ( )y x t A k x tw= -
y
d
v y(x,t) A sen (k x- t)
dt
w w= =
( )
2
cos ( - )
y y
d
a v A k x t
dt
w w= = -
Cinemática de la onda
•Derivando la ecuación de la
onda se obtiene la velocidad
vertical,
•Derivando la ecuación de la
velocidad de la onda, se tiene
la aceleración vertical
•La cual se puede escribir
como:
2
( , )w=-
y
a y x t

30/04/13 Física 2 / Yuri Milachay13
Rapidez y energía de una onda
transversal
•La ecuación de la rapidez de
propagación de la onda
transversal en una cuerda es
la siguiente.
•La ecuación de la potencia de
la onda es:
•La expresión de la potencia
máxima de la onda es:
•La expresión de potencia
media de la onda senoidal es
la siguiente:
2 2
maxP F Am w=
F
v
m
=
2 2
med
1
P F A
2
m w=
2 2 2
P(x,t) F A sen (kx t)m w w= -

30/04/13 Física 2 / Yuri Milachay14
Ejercicio
•Un alambre de piano con masa de 3,00 g y longitud de
80,0 cm se estira con una tensión de 25,0 N. Una onda
con frecuencia de 120,0 Hz y amplitud 1,6 mm viaja por
el alambre. a) calcule la potencia media que transporta
l onda. b) ¿Qué sucede con la potencia media si se
reduce a la mitad la amplitud de la onda?

30/04/13 Física 2 / Yuri Milachay15
Reflexión de ondas
•Una onda que llega a la frontera del medio de propagación se
refleja parcial o totalmente.

30/04/13 Física 2 / Yuri Milachay16
Interferencia de ondas
•Cuando dos pulsos viajan en
direcciones opuestas se
combinan en el espacio, se
interfieren y se produce un
pulso resultante. La
interferencia puede ser:
•Constructiva, cuando
coinciden crestas o valles.
•Destructiva, cuando
coinciden una cresta con un
valle.
•El principio de superposición,
consiste en combinar los
desplazamientos de los
pulsos individuales en cada
punto para obtener el
desplazamiento real de dos
ondas cuyas funciones son
y
1
(x,t) y y
2
(x,t).
( ) ( ) ( )
1 2
y x,t y x,t y x,t= +

30/04/13 Física 2 / Yuri Milachay17
Experimenta con las ondas
propagándose por la cadena

30/04/13 Física 2 / Yuri Milachay18
30/04/13 Jorge Moy, Yuri Milachay 18
Ondas estacionarias
•Onda estacionaria: Es el resultado de la superposición de dos ondas viajeras de la
misma frecuencia que se mueven en sentidos opuestos. El resultado de esta
superposición es la formación de cuadros de interferencia destructiva (partículas en
reposo) llamados nodos, y cuadros de interferencia constructiva (máxima amplitud)
denominados anti nodos.

30/04/13 Física 2 / Yuri Milachay19
30/04/13 Jorge Moy, Yuri Milachay 19
Ondas estacionarias en cuerdas
•Modo Fundamental (primer
armónico): Hay nodos en los
extremos de la cuerda. Esto hace
que sólo la mitad de la onda
progresiva completa esté ahí. Si la
longitud de la cuerda es L, L =
l/2, que combinado con
v = l f Þ l = v / f
Da,
f
1
= v/2L
•Segundo armónico
f
2
= v/L = 2f
1
.
En general,
f
n
= n(v/2L) = nf
1

30/04/13 Física 2 / Yuri Milachay20
Ejercicio
Solución.
a.v = lf
= (2´0,800)(60,0) m/s
= 96,0 m/s
a.F = mv
2
= (0,0400/0,800)(96,0)
2
N
= 461 N
•Un alambre de 40,0 g está
estirado de modo que sus
extremos están fijos en
puntos separados 80,0 cm. El
alambre vibra en su modo
fundamental con frecuencia
de 60,0 Hz y amplitud en los
antinodos de 0,300 cm. a)
Calcule la rapidez de
propagación de ondas
transversales en el alambre.
b) Calcule la tensión en el
alambre

30/04/13 Física 2 / Yuri Milachay21
El sonido
•El sonido, desde el punto de vista
físico, es una onda longitudinal que
se propaga en un medio elástico
(aire, agua o sólidos).
•Es producido por las fluctuaciones
de la presión del aire, debidas a la
oscilación de un objeto a
determinada frecuencia.
•La frecuencia de vibración se hace
audible a los 200 Hz (infrasonido) y
deja de percibirse cuando la
frecuencia es superior a 200 000
Hz (ultrasonido).
30/04/13 21
http://videos.howstuffworks.com/tlc/29843-understanding-sound-waves-video.htm
Yuri Milachay

30/04/13 Física 2 / Yuri Milachay22
Rapidez de las ondas sonoras
•La rapidez de una onda sonora en un
fluido depende del módulo de
volumen B y la densidad del fluido r:
•Si el fluido es un gas ideal, la rapidez
se expresa en términos de la
temperatura T, la masa molar M y la
razón de capacidades caloríficas g de
un gas:
•La rapidez de las ondas sonoras en
una varilla sólida depende de la
densidad del material r y el módulo
de Young Y:
Rapidez del sonido en varios medios
materiales
RT
v
M
g
=
Y
v
r
=
Medio v (m/s)
Aire(0°C) 331
Aire (20°C) 343
Hidrógeno (0°C) 1 286
Agua (25°C) 1 500
Mercurio 1 400
Aluminio 5 100
Cobre 3 560
Acero 5 130
B
v
r
=

30/04/13 Física 2 / Yuri Milachay23
Rapidez del sonido en el aire
•También depende la
velocidad del sonido en el
aire de la temperatura del
medio.
•La temperatura del aire se
mide en grados centígrados.
v 331 0,60T= +

30/04/13 Física 2 / Yuri Milachay24
Conclusiones
•Las ondas mecánicas son perturbaciones que se
propagan en un medio. De ellas, las armónicas pueden
describirse fácilmente.
•Con ayuda de la expresión de la posición vertical se
puede hallar las ecuaciones cinemáticas.
•Las ondas estacionarias surgen del análisis de las ondas
armónicas, concluyendo que existen frecuencias
específicas en que se produce un patrón de ondas
estacionario (armónicos).
•Se estudia las propiedades básicas del sonido y se
calcula la velocidad de propagación de esta onda.

30/04/13 Física 2 / Yuri Milachay25
Bibliografía
•R. Serway, J. Jewett. Física para Ciencias e
Ingeniería. 7° edición. Ed.Cengage Learning.
Pág. 426-429; 436-437.
•J. Wilson, A. Buffa. Física. 6° edición. Ed.
Pearson Educación. Pág. 445-446.
•Sears Zemansky. Física Universitaria. 12°
edición. Ed. Pearson Educación. Pág. 428,424;
440-442.