Operation of functions and Composite function.pdf

SerGeo5 1,663 views 29 slides Sep 08, 2022
Slide 1
Slide 1 of 29
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29

About This Presentation

General Mathematics
Operation of Function and Composite Function


Slide Content

Prepared by:
Mr. George G. Lescano

Addition of Function:
Tip 1: Combining like terms.
Tip 3: Be careful with the integers.
Tip 2: Put the equation/s in DESCENDING
ORDERS.

Addition of Function:
��=�
�
−������=��+�Example 1: −�+5
�
�
−3
��+�
+
+��
�
+2x
�
�
+��−�+�
�
�
+��+�
�+�??????=??????
2
+2??????+2

Addition of Function:
Example 2:
��=�
�
−��+�−��
�
�����=−��+�
�
−��
��=−��
�
+�
�
−��+���=�
�
−��−��
−��
�
+�
�
−��+�
�
�+
−��−��
−�
�
+�
�
−��−�
�+��=−�
�
+�
�
−��−�

Addition of Function:
Using the same given in example 2, find:
��=�
�
−��+�−��
�
�����=−��+�
�
−��
(�+�)(−�)
�+�−�=��
�+��=−�
�
+�
�
−��−�
=−−�
�
+−�
�
−�(−�)−�
=−−��+�+��−�
=��+�+��−�

Subtraction of Function:
fgxf xgx
CAUTION:Makesureyoudistributethe–toeach
termofthesecondfunction.Youshouldsimplify
bycombiningliketerms.

Subtraction of Function:
Example 1:��=��
�
+�������=��+�
��
�
+��(��+�)−
��
�
+��−��−�
��
�
−��+��−�
��
�
−��+�
�−��=��
�
−��+�

Subtraction of Function:
Example 2:��=−�
�
+�−��
�
�����=−��+�
−��
�
−�
�
+�(−��+�)−
+��−�
−��
�
−�
�
+��+�−�
�−��=−��
�
−�
�
+��+�
−��
�
−�
�
+�
−��
�
−�
�
+��+�

Subtraction of Function:
��=−�
�
+�−��
�
�����=−��+�
Using the same given in example 2, find:
(�−�)(�)
�−��=−��
�
−�
�
+��+�
=−�(�)
�
−(�)
�
+��+�
=−��−(�)+�+�
=−��−�+���−��=−�

Multiplication of Function:
f*gxf x*gx
To find theproductoftwo functions, put
parenthesis around them and multiply
each term from the first function to each
term of the second function.

Multiplication of Function:
��=−��+�������=��−�Example 1:
−��+��
��−�

−���
�
+���
���−��
−���
�
+���−��
(−��+��)(��−�)
??????=
??????=
??????=
??????=
−���
�
���
���
−��
���
�∗��=−���
�
+���−��

Multiplication of Function:
Example 2:��=��
�
−�+��
�
�����=−�+�
��
�
+��
�
−�
−�+�
−��
�
−��
�
+��
��
�
+��
�
−�
−��
�
+�
�
+��
�
+��−�
�∗��=−��
�
+�
�
+��
�
+��−�

Multiplication of Function:
��=��
�
−�+��
�
�����=−�+�
Using the same given in example 2, find:
(�∗�)
�
�
�∗��=−��
�
+�
�
+��
�
+��−�
=−�
�
�
�
+
�
�
�
+�
�
�
�
+�
�
�
−�

Multiplication of Function:
=−�
�
�
�
+
�
�
�
+�
�
�
�
+�
�
�
−�
=−�
�
��
+
�
�
+�
�
�
+�
�
�
−�
=
−�
��
+
�
�
+
�
�
+�−�
�∗�
�
�
=
−�
��

Multiplication of Function:
�∗�
�
�
=
−�
��

Division of Function:
When you divide two such functions together,
you get what is called a rational expression.
A rational expression is the division of two
polynomials. If they divide evenly, your answer
will become a polynomial.

Division of Function:
Polynomial long-division
Synthetic division

Example 1:��=��
�
+��+������=�+�
��
�
+��+��+�
��
��
�
−��

−��+�
−�

��+�
�
�
�
�=��−�+
�
�+�

Example:��=��
�
+��+������=�+�
??????����??????����������??????�����:
�+�=�
�+�−�=�−�
−�
�=−�
���
�
−�
−�
�
�
�
�
�=��−�+
�
�+�
���������

Division of Function:
Using the same given in the example, find:
��=��
�
+��+������=�+�
�
�
�
�
�
�
�=��−�+
�
�+�
=�
�
�
−�+�
=
�
�
+�
�
�
�
�
=
��
�
���
�
�

Composite Function:
Compositefunctionorcompositionof
functionisanotherwayofcombining
function.
Thismethodofcombiningfunctionusesthe
outputofonefunctionastheinputfora
secondfunction.

Composite Function:
f g xf [ g x]
This is read “f composition g” or “f composed
g” and means to copy the f function down but
where ever you see an x, substitute in the g
function.

Composite Function:
Example 1:��=��+�������=�+�
=�(�+�)+��
��+�+��
��+��
f[gx]=��+��

Composite Function:
Example 2:��=��
�
−�+����??????�=−��+�
�(−��+�)
�
−(−��+�)+�
�(��
�
−���+�)+��−�+�
���
�
−���+��+��−�+�
ℎ????????????=12??????
2
−34??????+32

Another one…
Given that:��=��+������=−��−�,����:
�.���2.��−�
�(−��−�)+�
−���−��+�
f[gx]=−���−��
−���−��
−��(−�)−��
��−��
�[�−�]=−�

Quotation of the day:
“ One of the lesson of math in our life
that we should to apply is always be
careful with the sign ”
-Anonymous