Operations Research- LPP formulation with examples

TruptiMarkose 105 views 34 slides Jul 01, 2024
Slide 1
Slide 1 of 34
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34

About This Presentation

LPP formulation


Slide Content

Module-1
Formulation of Linear
Programming Problem
1

Introduction
•Manymanagementdecisionsinvolvetryingtomakethemosteffectiveuseof
anorganization’sresources.
•Resourcestypicallyincludemachinery,labor,money,time,warehousespace,
orrawmaterials.
•Resourcesmaybeusedtoproduceproducts(suchasmachinery,furniture,
food,orclothing)orservices(suchasschedulesforshippingandproduction,
advertisingpolicies,orinvestmentdecisions).
•Linearprogramming(LP)isawidelyusedmathematicaltechniquedesignedto
helpmanagersinplanninganddecisionmakingrelativetoresourceallocation.
•Despitethename,linearprogramming,andthemoregeneralcategoryof
techniquescalled“mathematicalprogramming”,haveverylittletodowith
computerprogramming.
•IntheworldofOperationsResearch,programmingreferstomodelingand
solvingaproblemmathematically.
•Computerprogramminghas,however,playedanimportantroleinthe
advancementanduseofLPtosolvereal-lifeLPproblems
2

LinearProgrammingProblem(LPP)isconcernedwithfindingthe
optimalvalue(maximumorminimumvalue)ofalinearfunction(called
objectivefunction)ofseveralvariables(sayxandy),subjecttothe
conditionsthatthevariablesarenon-negativeandsatisfyasetoflinear
inequalities(calledlinearconstraints)
Theobjectivefunctionmaybeprofit,cost,productioncapacityorany
othermeasureofeffectiveness,whichistobeobtainedinthebest
possibleoroptimalmanner.
Theconstraintsmaybeimposedbydifferentresourcessuchasraw
materialavailability,marketdemand,productionprocessand
equipment,storagecapacity,etc.
3
Linear Programming Problem

Bylinearityismeantamathematicalexpressioninwhichtheexpressions
amongthevariablesarelineare.g.,theexpressiona1x1+а2x2+a3x3+...+
anxnislinear.Thevariablesobeythepropertiesofproportionality(e.g.,ifa
productrequires3hoursofmachiningtime,5unitsofitwillrequire15
hours)andadditivity(e.g.,amountofaresourcerequiredforacertain
numberofproductsisequaltothesumoftheresourcerequiredforeach).
ALinearProgrammingmodelseekstomaximizeorminimizealinear
function,subjecttoasetoflinearconstraints.Thelinearmodelconsistsof
thefollowingcomponents:
Asetofdecisionvariables
Anobjectivefunction
Asetofconstraints
4

ImportanceofLinearProgramming
Manyrealworldproblemslendthemselvestolinearprogramming
modeling.
Therearewell-knownsuccessfulapplicationsin:
Manufacturing-Productmixproblems,Blendingproblems,
Productionschedulingproblems,Trimlossproblems,Assembly-line
balancing.
Management-Mediaselectionproblems,Portfolioselection
problems,Profitplanningproblems,Transportationproblems,
Assignmentproblems,Man-powerschedulingproblems
Finance(investment)
Advertising
Agriculture
5
Linear Programming Problem

6
LPP -Formulation
Max/Min Z= c
1x
1+ c
2x
2+ ... + c
nx
n
subject to:
a
11x
1+ a
12x
2+ ... + a
1nx
n(≤, =, ≥) b
1
a
21x
1+ a
22x
2+ ... + a
2nx
n(≤, =, ≥) b
2
:
a
m1x
1+ a
m2x
2+ ... + a
mnx
n(≤, =, ≥) b
m
x
1, x
2, …..,x
n≥ 0
x
j= decision variables
b
i= constraint levels
c
j = objective function coefficients
a
ij= constraint coefficients

Q1
Supposeyouconsideracademicsandextra-curricularactivitiesarethe
twomostimportantaspectsthathavedirectimpactonyourprospectsfor
placements.Youestimatetheratiooftheimpactofdevoting1hourto
academicstotheimpactofdevoting1hourtoextra-curricularactivities
onyourplacementprospectstobe3:5.Youdecidenottospendmore
than8hoursdailyforthesetwoactivities.Moreover,youestimatethat1
hourofacademicsand1hourofextra-curricularactivitiesburn,onan
average,100and250calories,respectively,andyoucannotaffordtoburn
morethan1250caloriesforthesetwoactivitiesbasedonyouraverage
dailycalorieintake.Howmanyhoursshouldyoudevotetoacademicsand
extra-curricularactivitiesdaily?
7
LPP -Formulation

Q1
Supposeyouconsideracademicsandextra-curricularactivitiesarethe
twomostimportantaspectsthathavedirectimpactonyourprospectsfor
placements.Youestimatetheratiooftheimpactofdevoting1hourto
academicstotheimpactofdevoting1hourtoextra-curricularactivities
onyourplacementprospectstobe3:5.Youdecidenottospendmore
than8hoursdailyforthesetwoactivities.Moreover,youestimatethat1
hourofacademicsand1hourofextra-curricularactivitiesburn,onan
average,100and250calories,respectively,andyoucannotaffordtoburn
morethan1250caloriesforthesetwoactivitiesbasedonyouraverage
dailycalorieintake.Howmanyhoursshouldyoudevotetoacademics
andextra-curricularactivitiesdaily?
8
LPP -Formulation

Q1
Supposeyouconsideracademicsandextra-curricularactivitiesarethe
twomostimportantaspectsthathavedirectbearingsonyourprospects
forplacements.Youestimatetheratiooftheimpactofdevoting1hourto
academicstotheimpactofdevoting1hourtoextra-curricularactivities
onyourplacementprospectstobe3:5.Youdecidenottospendmore
than8hoursdailyforthesetwoactivities.Moreover,youestimatethat1
hourofacademicsand1hourofextra-curricularactivitiesburn,onan
average,100and250calories,respectively,andyoucannotaffordtoburn
morethan1250caloriesforthesetwoactivitiesbasedonyouraverage
dailycalorieintake.Howmanyhoursshouldyoudevotetoacademicsand
extra-curricularactivitiesdaily?
9
LPP -Formulation

Q1
Supposeyouconsideracademicsandextra-curricularactivitiesarethe
twomostimportantaspectsthathavedirectbearingsonyourprospects
forplacements.Youestimatetheratiooftheimpactofdevoting1hourto
academicstotheimpactofdevoting1hourtoextra-curricularactivities
onyourplacementprospectstobe3:5.Youdecidenottospendmore
than8hoursdailyforthesetwoactivities.Moreover,youestimatethat
1hourofacademicsand1hourofextra-curricularactivitiesburn,on
anaverage,100and250calories,respectively,andyoucannotafford
toburnmorethan1250caloriesforthesetwoactivitiesbasedonyour
averagedailycalorieintake.Howmanyhoursshouldyoudevoteto
academicsandextra-curricularactivitiesdaily?
10
LPP -Formulation

Q1
Solution-
Decisionvariables:
Objectivefunction:
Constraints:
11
LPP -Formulation

Q1
Solution-
Decision variables:
x
1: No. of hours devoted to academics daily
x
2: No. of hours devoted to extra-curricular activities daily
Objective function:
Maximize the impact on placement prospects
Max, Z= 3x
1+ 5x
2
Constraints:
x
1+ x
2<= 8 (hours)
100x
1+ 250x
2<= 1250 (calories)
x
1, x
2>= 0
12
LPP -Formulation

13
Example: Giapetto woodcarving Inc.,
•GiapettoWoodcarving,Inc.,manufacturestwotypesofwoodentoys:
soldiersandtrains.Asoldiersellsfor$27anduses$10worthofraw
materials.EachsoldierthatismanufacturedincreasesGiapetto’s
variablelaborandoverheadcostby$14.Atrainsellsfor$21anduses
$9worthofrawmaterials.EachtrainbuiltincreasesGiapetto’s
variablelaborandoverheadcostby$10.Themanufactureofwooden
soldiersandtrainsrequirestwotypesofskilledlabor:carpentryand
finishing.Asoldierrequires2hoursoffinishinglaborand1hourof
carpentrylabor.Atrainrequires1houroffinishingand1hourof
carpentrylabor.Eachweek,Giapettocanobtainalltheneededraw
materialbutonly100finishinghoursand80carpentryhours.
Demandfortrainsisunlimited,butatmost40soldiersarebought
eachweek.Giapettowantstomaximizeweeklyprofit.Formulatea
linearprogrammingmodelofGiapetto’ssituationthatcanbeusedto
maximizeGiapetto’sweeklyprofit

14
Solution: Giapetto woodcarving Inc.,
•Step1:Modelformulation
1.Decisionvariables:webeginbyfindingthedecision
variables.InanyLP,thedecisionvariablesshould
completelydescribethedecisionstobemade.Clearly,
Giapettomustdecidehowmanysoldiersandtrains
shouldbemanufacturedeachweek.Withthisinmind,
wedefine:
X
1=numberofsoldiersproducedeachweek
X
2=numberoftrainsproducedeachweek

15
Solution: Giapetto woodcarving Inc.,
2.Objectivefunction:inanyLP,thedecisionmakerwantsto
maximize(usuallyrevenueorprofit)orminimize(usually
costs)somefunctionofthedecisionvariables.The
functiontobemaximizedorminimizediscalledthe
objectivefunction.FortheGiapettoproblem,wewill
maximizethenetprofit(weeklyrevenues–rawmaterials
cost–laborandoverheadcosts).
Weeklyrevenuesandcostscanbeexpressedintermsofthe
decisionvariables,X
1andX
2asfollowing:

16
Solution: Giapetto woodcarving Inc.,
•Weeklyrevenues=weeklyrevenuesfromsoldiers+
weeklyrevenuesfromtrains
=27X
1+21X
2
Also,
Weeklyrawmaterialscosts=10X
1+9X
2
Otherweeklyvariablecosts=14X
1+10X
2
Therefore,theGiapettowantstomaximize:
(27X
1+21X
2)–(10X
1+9X
2)–(14X
1+10X
2)=3X
1+2
X
2
Hence,theobjectivefunctionis:
MaximizeZ=3X
1+2X
2

17
Solution: Giapetto woodcarving Inc.,
3.Constraints:asX
1andX
2increase,Giapetto’sobjective
functiongrowslarger.ThismeansthatifGiapettowere
freetochooseanyvaluesofX
1andX
2,thecompany
couldmakeanarbitrarilylargeprofitbychoosingX
1and
X
2tobeverylarge.Unfortunately,thevaluesofX
1andX
2
arelimitedbythefollowingthreerestrictions(often
calledconstraints):
Constraint1:eachweek,nomorethan100hoursof
finishingtimemaybeused.
Constraint2:eachweek,nomorethan80hoursof
carpentrytimemaybeused.
Constraint3:becauseoflimiteddemand,atmost40
soldiersshouldbeproduced.

18
Solution: Giapetto woodcarving Inc.,
•Thethreeconstraintscanbeexpressedintermsof
thedecisionvariablesX
1andX
2asfollows:
Constraint1:2X
1+X
2100
Constraint2:X
1+X
280
Constraint3:X
140
Note:
Thecoefficientsofthedecisionvariablesinthe
constraintsarecalledtechnologicalcoefficients.This
isbecauseitsoftenreflectthetechnologyusedto
producedifferentproducts.Thenumberonthe
right-handsideofeachconstraintiscalledRight-
HandSide(RHS).TheRHSoftenrepresentsthe
quantityofaresourcethatisavailable.

19
Solution: Giapetto woodcarving Inc.,
•Sign restrictions:to complete the formulation of the
LP problem, the following question must be
answered for each decision variable: can the
decision variable only assume nonnegative values,
or it is allowed to assume both negative and positive
values?
Ifa decision variable X
ican only assume a nonnegative
values, we add the sign restriction (called
nonnegativityconstraints)
X
i0.
If a variable X
ican assume both positive and negative
values (or zero), we say that X
iis unrestricted in
sign (urs).
In our example the two variables are restricted in sign,
i.e., X
10 and X
20

20
Solution: Giapetto woodcarving Inc.,
•Combiningthenonnegativityconstraintswiththe
objectivefunctionandthestructuralconstraintsyield
thefollowingoptimizationmodel(usuallycalledLP
model):
MaxZ=3X
1+2X
2(objectivefunction)
subjectto(st)
2X
1+X
2100(finishingconstraint)
X
1+X
280 (carpentryconstraint)
X
140 (soldierdemandconstraint)
X
10andX
20(nonnegativityconstraint)
Theoptimalsolutiontothisproblemis:
X
1=20,andX
2=60,Z=180

TYPESOFFORMULATIONPROBLEMS
AProductMixExample
ADietExample
AnInvestmentExample
AMarketingExample
ATransportationExample
ABlendExample
AMulti-PeriodSchedulingExample
ADataEnvelopmentAnalysisExample
21
LPP -Formulation

Q2
Supposethatafarmerhasapieceoffarmland,sayAsquarekilometers
large,tobeplantedwitheitherwheatorbarleyorsomecombinationof
thetwo.ThefarmerhasalimitedpermissibleamountFoffertilizerandP
ofinsecticidewhichcanbeused,eachofwhichisrequiredindifferent
amountsperunitareaforwheat(F1,P1)andbarley(F2,P2).LetS1be
thesellingpriceofwheat,andS2thepriceofbarley.Ifwedenotethearea
plantedwithwheatandbarleywithx1andx2respectively,thenthe
optimalnumberofsquarekilometerstoplantwithwheatvs.barleycan
beexpressedasalinearprogrammingproblem.
22
LPP -Formulation

Q2
Solution-
Maximize, Z= S
1x
1+ S
2x
2(maximize the revenue )
subject to x
1+x
2<A (limit on total area)
F
1x
1+ F
2x
2<F(limit on fertilizer)
P
1x
2+ P
2x
2<P(limit on insecticide)
x
1, x
2>0(cannot plant a negative area)
23
LPP -Formulation

Q3
CycleTrendsisintroducingtwonewlightweightbicycleframes,the
DeluxeandtheProfessional,tobemadefromaluminumandsteelalloys.
TheanticipatedunitprofitsareRs10fortheDeluxeandRs15forthe
Professional.Thenumberofkgofeachalloyneededperframeis
summarizedbelow.Asupplierdelivers100kgofthealuminumalloyand
80kgofthesteelalloyweekly.HowmanyDeluxeandProfessionalframes
shouldCycleTrendsproduceeachweek?
Kg of each alloy needed per frame
24
LPP -Formulation
Aluminum AlloySteel Alloy
Deluxe 2 3
Professional 2 4

Q3
Solution-
MaxZ=10x+15y
SubjectTo
2x+2y<=100(aluminumconstraint)
3x+4y<=80(steelconstraint)
x,y>0 (non-negativityconstraints)
25
LPP -Formulation

Q4
Ananimalfeedcompanymustproduceexactly200kgofamixture
consistingofingredientsG1andG2.TheingredientG1costsRs.3perkg
andG2costsRs.5perkg.Notmorethan80kgofG1canbeusedand
atleast60kgofG2mustbeused.Findtheminimumcostmixture.
Formulatethisasalinearprogrammingmodel.
26
LPP -Formulation

Q4
Solution-
Letx1=No.ofunits(inKg)ofingredientG1.
&x2=No.ofunits(inKg)ofingredientG2.
Objectivefunctionis,Minimize,Z=3x1+5x2
Subjecttoconstraints,
x1+x2=200
x1≤80
x2≥60
x1,x2≥0 27
LPP -Formulation

Q5
Acompanysupplyingthreetypesofpartstoanautomaticmanufacturingcompany,
purchasescastingsofthreepartsfromanearbyfoundryandperformsthreetypes
ofoperatorsbeforesellingtheseandcostperhourofthesemachinesisgiveninthe
tablebelow:
ThecostofthecastingsforA,Rs120,forBRs200,forCRs400andtheselling
priceofthesepartsisRs200,Rs350andRs500respectively.Allthepartsthatare
processedbythecompanycanbesold,Whatquantityofvariouspartsshouldthe
companyprocessforsellinginordertomaximizetheirprofits? 28
LPP -Formulation
Machine Capacity/hourCapacity/hourCapacity/hourCost/hour (Rs.)
A B C
Cutting 20 60 25 150
Drilling 40 20 40 100
Polishing 50 50 20 200

Q5
Solution-
Letx,y,zbethenumberofpartsthecompanyshouldprocess.
ProfitfrompartA=200–120–costof(Cutting+Drilling+Polishing)
=200–120–[(150/20)+(100/40)+(200/50)]
=200–120–14=Rs66
ProfitfrompartB=Rs118.5
ProfitfrompartC=Rs81.5
29
LPP -Formulation

Q5
Solution-
Max,
Z=66x+118.5y+81.5z
Subjectto:
Cuttingmachineconstraint;(x/20)+(y/60)+(z/25)≤1
Drillingmachineconstraint;(x/40)+(y/20)+(z/40)≤1
Polishingmachineconstraint;(x/50)+(y/50)+(z/20)≤1
x,y,z≥0
30
LPP -Formulation

Q6
TheSkyshoppromotesitsproductsfromalargecitytodifferentpartsinthestate.
TheSkyshophasbudgeteduptoRs.8,000perweekforlocaladvertising.The
moneyistobeallocatedamongfourpromotionalmedia:TVspots,newspaperads,
andtwotypesofradioadvertisements.Skyshop’sgoalistoreachthelargest
possiblehigh-potentialaudiencethroughthevariousmedia.Thefollowingtable
presentsthenumberofpotentialcustomersreachedbymakinguseofan
advertisementineachofthefourmedia.Italsoprovidesthecostper
advertisementplacedandthemaximumnumberofadsthatcanbepurchasedper
week.
31
LPP -Formulation

Q6
Skyshop’scontractualarrangementsrequirethatatleastfiveradiospotsbeplaced
eachweek.Toensureabroad-scopedpromotionalcampaign,managementalso
insiststhatnomorethanRs.1,800bespentonradioadvertisingeveryweek.
FormulatethisproblemasaLPP.
32
LPP -Formulation

Q6
Solution-
Let
X1=numberof1-minuteTVspotstakeneachweek.
X2=numberoffull-pagedailynewspaperadstakeneachweek
X3=numberof30-secondprime-timeradiospotstakeneachweek
X4=numberof1-minuteafternoonradiospotstakeneachweek
Objective:Maximizeaudiencecoverage
33
LPP -Formulation

Q6
Solution-
Objective:Maximizeaudiencecoverage,
Z=5,000X1+8,500X2+2,400X3+2,800X4
Subjectto:
X1<=12
X2<=05
X3<=25
X4<=20
800X1+925X2+290X3+380X4<=8000
X3+X4>=5
290X3+380X4<=1800
X1,X2,X3,X4>=0
34
LPP -Formulation