optical receivers for optical communciation system

ilvrsn 9 views 46 slides Jul 24, 2024
Slide 1
Slide 1 of 46
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46

About This Presentation

optical receivers


Slide Content

UNIT –4
OPTICAL RECEIVERS

Optical Detectors
High Sensitivity at wavelength of interest
Fast Response speed/Sufficient BW
Insensitive to temperature variations
Compatible with dimensions of fiber
Minimum addition of noise to the system
Shot noise
Receiver thermal noise
Beat noise
PIN Photodiodes, Avalanche Photodiodes
Direct detection / Coherent detection

pinphotodiode circuit

Energy-band diagram
( Why reverse bias ? )
Photon energy
corresponding
to longest
wavelength 
slighly greater
than bandgap energy
for high efficiency
& low dark current

Semi-conductor PDs
Intrinsic / extrinsic absorption
Direct band gap material, lattice matching
Absorption coefficient vs wavelength
Si 1.1 m
GaAs 0.9 m
Ge 1.8 m
InGaAsP 1.4 m
InGaAs 1.75 m

Absorption characteristics1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
Wavelength (micrometer)
absorption coefficient
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Light penetration depth (

m)
10
-1
1
10
100
1000
Si
GaAs
Ge
InGaAsP
InGaAs

Photodiode Principle
佐藤勝昭編著「応用物性」 p.152
Structure and band diagram of photo-diode
p n
Deple
tion
layer
Reverse
bias
Incident
photon
Electric signal
Bias voltage
Load
resistance
Photocurrent
Optical signal

Reverse-biased pinphotodiode
P(w) = P
o[ 1 –exp(-
sw) ]
Ip= (q/h) P
o[ 1 –exp(-
sw) ] (1-R
f)
R
freflectivity of detector surface

Quantum Efficiency
= number of electrons collected= I
p/e
number of incident photonsP
o/h
absorption coefficient, wavelength, DR width, 35-90% ?
Responsivity  = I
p/P
o(A/W)
= e/ h = e / hc
< 1 for pin photodiode ; < 1
Upper cutoff 
c= hc/E
g

Photodiode Responsivities

Avalanche Photodiode Detector
(APD)
Receiver sensitivity
Impact ionization
Avalanche multiplication
Reach-through construction

p
+
pn
+
reach-through structure
( RAPD)
•Fully depleted mode
•Absorption in region
•Carrier multiplication pn
+
junction
Electric Field
Minimum field
required for
impact ionization
p
+
n
+
p
i()
DR
MR
Photons

Carrier Multiplication
Internal amplification
Thermal noise component reduced
Ionization rate : average number of e
-
-h
+
pairs
created by a carrier / unit distance
k = / ; h
+
, e
-
;
Low noise & high GBP : k 0 ‘or’  ( Eg. Si )
AverageMultiplication M = I
M/ I
p

APD= ( q/h) M = 
0M
unity gain responsivity

Signal-to-Noise Ratio

Sensitivity
(minimum detectable optical power; SNR = 1)
h
h
C
d C
aR
aR
L
R
s
A
R
s<< R
L
Output SNR
Signal power from photocurrent
PD noise power+ Amp. Noise power
i
ph(t) = I
p+ i
p(t)
i
s
2
= i
p
2
pin PD
i
s
2
= i
p
2
M
2
APD
R
a>> R
L
i
T
2
= 4K
BTB
R
L
A
Bias voltage

Photodetector Noises
Quantum noise / shot noise
No. of photons of particular arriving at detector surface 
poisson process
i
Q
2
= 2qBI
ppin PD
Noise due to random gain mechanism (APD)
No. of secondary electrons generated per primary photoelectron
random process
i
Q
2
= 2qBI
pM
2
F(M)excess noise factor
F(M)  Actual noise generated . ~ M
x
(0< x < 1)
Noise under constant multiplication

Photodetector Noises
Dark current noise
Bulk dark current noise –thermally generated / background
radiation within the bulk of the device
i
DB
2
= 2qBI
D pin PD
i
DB
2
= 2qBI
DM
2
F(M) APD
Surface leakage current noise –surface defects, cleanliness,
bias, etc.
Guard ring structure
i
Q
2
= 2qBI
Lpin PD & APD
Impact of increasing M on SNR (BER)

Impact of Reverse Bias
What happens
if the applied
reverse bias is
continually
increased ?

Impact of input power on gain
VB
What happens when
Input power is very
High ?
How far can this
Multiplication
Process go on ?

Speed of response
Drift time of carriers through the depletion region
e
-
field at saturation v
d
t
drift= w/v
d [ Si 0.1 ns for w=10m, 2x10
4
V/cm ]
Diffusion time of carriers generated outside the depletion region
Slow process ; hole 40 ns, electron 8 ns
Time constant incurred by the capacitance of the photodiode with
its load ( junction & packaging)
Voltage dependant capacitance C
j= sA/w
PD as RC LPF
B=1/2RtCt
Maximum PD 3 dB BW
B
m= 1/ 2t
drift= v
d / 2w

Rise and fall times

Photodiode not fully depleted

Various pulse responses
High QE
High QE

APD Response
Fully depleted mode
(a) Carrier drift across absorption region
(b) Time taken for performing avalanche
multiplication process
(c) RC time constant
At low gains (a) & (c) dominant
At high gains (b) dominant; BW decreases
Rise times 150 -200 ps (electrons)
Fall times 1 ns ( holes )

Excess Noise Factor

APD Vs. pinPD
pinPD thermal noise -signal independent
APD shot noise dominant –signal dependent noise
APD sensitivity:
= 0.82 m, APD 10-13 dB away from quantum limit
pin PD 15 dB away from quantum limit
= 1.55m, APD 20 dB above quantum limit
pin PD 30-32 dB over quantum limit
APD drawbacks:
Fabrication difficulties & increased cost
Addition of noise due to gain randomness
Higher bias voltages
Variation of gain with temperature ( , )
Tags