OPTIMALISASI WWTP dengan EC dan turununannya di industri

rachmadardhianto 4 views 31 slides Mar 02, 2025
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

Proses EC di WWTP


Slide Content

ELECTROCOAGULATION AS PRETREATMENT OF WASTEWATER TREATMENT Oleh: Rachmad Ardhianto , ST., MT Teknik Lingkungan – FTIK IT PLN This Photo by Unknown Author is licensed under CC BY

JENIS KONFIGURASI REAKTOR DAN PERUNTUKANYA ELECTROCHEMICAL COAGULATION (MULTIROD HELICAL SYSTEM) ELECTROCHEMICAL COAGULATION (MULTIROD HELICAL SYSTEM) ELECTRODE CONSUMPTION ALUMINUM (6061 SERIES) ELECTRODE CONSUMPTION IRON (ST 41) ELECTRODE CONSUMPTION MAGNESIUM (Mg ALOY)

BACKGROUND Industrial And Municipal Treatment Is Needed For Water; Degree of treatment depends on (end use/raw water quality); Higher degree of Treatment = “Higher Cost”; Opportunity for Reuse the Wastewater for another product; Higher Sludge Production = Higher Cost’’ Quality Standard regulations are becoming increasingly complex.

TOOLBOX

BACKGROUND AOPS/EAOPS

EC VS Chemical Coagulation Chemical Treatment “Alum, lime and/or polymers…tend to generate large volumes of sludge with high bound water content that can be slow to filter and difficult to dewater. These treatment processes also tend to increase the total dissolved solids (TDS) content of the effluent, making it unacceptable for reuse within industrial applications.”* Electrocoagulation “The characteristics of the electrocoagulated floc differ dramatically from those generated by chemical coagulation. An electrocoagulated floc tends to contain less bound water, is more shear resistant and is more readily filterable ”** * Benefield , Larry D.; Judkins , Joseph F.; Weand , Barron L. (1982). Process Chemistry for Water and Wastewater Treatment. Englewood Cliffs, NJ: Prentice-Hall. P. 212. ** Woytowich , David L.; Dalrymple, C.W.; Britton, M.G. (Spring 1993). “Electrocoagulation (CURE) Treatment of Ship Bilge Water for the US Coast Guard in Alaska”. Marine Technology Society Journal (Columbia, MD: Marine Technology Society, Inc.) 27(1):92 .

KEY PARAMETERS OF EC Sumber : Lopez-Guzman et al., 2021

MECHANISM OF EC

APPLICATION OF EC

BACKGROUND STUDY DAN DESIGN APLIKASI : Nilai Rasio BOD/COD menunjukan nilai 0,26, 0,249, 0,253 (Jun 22, Feb 22, Mar 22), Nilai rasio dibawah 0,3 Menunjukan limbah dalam fase medium biodegradable, dengan konsep proses biologis akan membutuhkan waktu yang lama untuk proses degradasinya .

Project analysis slide 2 DATA EKSISTING Berdasarkan rasio inlet Air limbah , dapat diprediksi rentang nilai BOD adalah sebesar 150 mg/L – 300 mg/L Nilai BOD Rendah akan menyebabkan proses biologis membutuhkan waktu untuk mendegradasi . BUTUH PRETREATMENT >TOC Nilai Rasio BOD/COD menunjukan nilai 0,26, 0,249, 0,253 (Jun 22, Feb 22, Mar 22), Nilai rasio dibawah 0,3 Menunjukan limbah dalam fase medium biodegradable, dengan konsep proses biologis akan membutuhkan waktu yang lama untuk proses degradasinya .

Project analysis slide 2 OPSI TEKNOLOGI NILAI RASIO OUTLET : 0,3 WATER POND ELECTRO COAGULATION CLARIFIER MBBR BIOLOGICAL PROCESS EFISIENSI 50-70% EFISIENSI 70-90% REMOVE COD INORGANIC, COD ORGANIC, COLOIDAL PATOGEN, COLOR (EFFECT GAMBUT) BOD/COD REMOVAL COD > 1.000 mg/L (Anaerob) COD < 1.000 mg/L ( Aerob )

Project analysis slide 2 KARAKTERISTIK AWAL TSS CODs CODt pH TDS 156 mg/L 352 mg/L 561 mg/L 8,63 3663 mg/L

Project analysis slide 2 KARAKTERISTIK HASIL (FE ANODE + ADJUSEMENT) TSS CODt pH TDS 67 mg/L 45 mg/L 8,07 3663 mg/L

Project analysis slide 2 KARAKTERISTIK HASIL (AL ANODE + ADJUSEMENT) TSS CODt pH TDS 9 mg/L 174 mg/L 7,7 3663 mg/L

Project analysis slide 2 KARAKTERISTIK HASIL (FE ANODE) TSS CODt pH TDS 80 mg/L 95 mg/L 9,45 3663 mg/L

Project analysis slide 2 KARAKTERISTIK HASIL (AL ANODE) TSS CODt pH TDS 9 mg/L 102 mg/L 8,97 3663 mg/L

KALKULASI DESIGN (TDS AIR LIMBAH) No Uraian Satuan TDS (Mg/L) 60,00 100,00 300,00 3.500,00 3.750,00 4.000,00 1 Konduktivitas Air S/Cm 0,0000938 0,000156 0,000369 0,00547 0,00586 0,00625 2 Jarak Anode dan Katode Cm 0,5 0,5 0,5 1 0,5 0,5 3 Dimensi Elektroda cm 4,45 4,45 5,7 60 cm x 80 cm 4,45 4,45 4 Luas Elektroda Cm2 1.413 1.413 1.815 4.800,000 1.413 1.413 5 Konstanta Cell (K) 1/Cm 0,0004 0,0004 0,0003 0,0002 0,0004 0,0004 6 Konductance Mho 0,2650 0,4408 1,3397 26,2560 16,5585 17,6606 7 Hambatan Berdasarkan Nilai Konduktiviti Ohm 3,77 2,27 0,75 0,038 0,06 0,0566 8 Jumlah Elektroda bh 80 11 Luas ELektroda m2 38,40000 12 Hambatan Jenis Elektroda Ohm.m 0,0000004900 13 Hambatan Elektroda Ohm       0,00000 14 Total Hambatan Ohm       0,038

KALKULASI DESIGN (Fe BLADE) PLATE SYSTEM Debit Air lImbah = 200 M3/Day Debit Air lImbah = 200.000 L/Day 200 M3/Day Fe yang Luruh (Sebagai Insitu Coagulan) = 60 mg/L 60 g/M3 Kebutuhan Fe = 12.000 g/Day = 12,00 kg/Day Mr Fe = 56 g/Moll Mol (Fe 2+) = 214,29 Mol Fe2+/Day Menghitung Intesitas Arus yang harus diapplikasikan r = i/n.F ® r = i.n.F n (Valensi Fe) = 2 F = 96500 C/Moll time (1 Hari/86400 s) = 1,15741E-05 d/s I ( Arus ) = 479 A HAMBATAN PROSES EC = 0,0380 OHM V (Volt) = 18 V E- Consumption = 8.706,77 Watt     8,71 KW NOTE: Posisi elektroda dikoneksikan dengan system Monopolar Pararel Untuk Memudahkan Aplikasi Lapangan dan Keperluan Pembelian Rectifier maka Proses Monopolar dirubah menjadi Bipolar Pararel

PLATE SYSTEM Debit Air lImbah = 200 M3/Day Debit Air lImbah = 200.000 L/Day 200 M3/Day Al yang Luruh (Sebagai Insitu Coagulan) = 20 mg/L 20 g/M3 Kebutuhan Al = 4.000 g/Day = 4,00 kg/Day Mr Al = 27 g/Moll Mol (Al 2+) = 148,15 Mol Al2+/Day Menghitung Intesitas Arus yang harus diapplikasikan r = i/n.F ® r = i.n.F n (Valensi Fe) = 3 F = 96500 C/Moll time (1 Hari/86400 s) = 1,15741E-05 d/s I (Arus) = 496 A HAMBATAN PROSES EC = 0,0380 OHM V (Volt) = 19 V E- Consumption = 9.363,36 Watt     9,4 KW NOTE: Posisi elektroda dikoneksikan dengan system Monopolar Pararel Untuk Memudahkan Aplikasi Lapangan dan Keperluan Pembelian Rectifier maka Proses Monopolar dirubah menjadi Bipolar Pararel KALKULASI DESIGN (Al BLADE)

ILUISTRASI DESIGN + - + -

ILUISTRASI DESIGN + - + - + - - + + -

SUMBER: ARDHIANTO et al. , 2024

EC FOR INDUSTRY

FULL SCALE OPERATION Month Heavy metals concentration after electrocoagulation (mg L –1 ) Effluent quality standard* (mg/L) Removal (%) Cr Ni Cu Cr Ni Cu Cr Ni Cu July 0.17 0.16 0.18 1.00 0.40 4.00 99.78 99.85 99.53 August 0.17 0.16 0.18 1.00 0.40 4.00 99.78 99.85 99.53 September 0.17 0.16 0.18 1.00 0.40 4.00 99.78 99.85 99.53 October 0.17 0.16 0.18 1.00 0.40 4.00 99.78 99.85 99.53 November 0.20 0.10 0.30 1.00 0.40 4.00 99.75 99.91 99.22 December 0.13 0.23 0.20 1.00 0.40 4.00 99.83 99.78 99.48 January 0.16 0.06 0.05 1.00 0.40 4.00 99.80 99.94 99.87 February 0.09 0.05 0.05 1.00 0.40 4.00 99.89 99.95 99.87 March 0.12 0.04 0.05 1.00 0.40 4.00 99.85 99.96 99.87 Sumber : Ardhianto et al ., 2024

CASE STUDY FULL SCALE Heavy Metal Reactor Time (Min) Electrode & Distance (mm) Conductivity (mS/Cm) Flow Optimum pH Current Density   Power (kWh/M 3 ) Removal (%) Ref Cu 2+ , Zn 2+ , Cr 6+ Continues 20 Al-Al / 5 - 10 ml/min 4,0 0,048 A/m 2 - 99,99,83 Adhoum et al., 2004 Cr 6 + Continues 24 Al-Al / 15 2,0 22,5 ml/min 5,0 35,7 mA/cm 2 137 90,4 Reddy and Thukral , 2009 Cd 2+ Continues 200 Al-Al / 10 1,06 5,0 ml/min 8,9 0,04 A/m 2 - 98,2 Mansour et al., 2013 Cr 6 + Batch 72 Fe-Fe / 4 1,5 - 5,0 30 A/m 2 1 80-97 Bazrafshan et al., 2006 Cu 2+ , Ni 2+ , Cr 3+ Continues 45 Cs-Cs / 15 8,9 600 ml/min 9,56 4 mA/cm 2 6,25 99 Al- Shannag et al., 2015 Ni 2+ , Continues 20 Al-Al/ Fe-Fe/ 10 1,0 6 ml/min 6,0 7,5 A/m 2 - 100 Lu et al., 2015 Cu 2+ , Ni 2+ , Zn 2+ Continues 105 Second Al-Cs / 40 - 1L/min 2-4 0,6 A/m 2 0,117 Cu; Ni : 70 Zn : 99 Rincon and Motta, 2014 Cu 2+ , Ni 2+ , Zn 2+ , Cr 3+ Batch 60 Fe-Fe - - 7,89-9,56 4 mA/cm 2 6,25 - 8,33 99-100 Al- Shannag et al., 2015 Cu 2+ , Ni 2+ , Cr 3+ dan Cr 6+ Continues 30 Second Fe (rod)-St ( Mrhs ) / 5 4-6 18.000 L/Jam 9-9,5 764.54 ± 66 - 1,547.34 ± 809.63 A/m 2 0,54 ±0,152 -0,67 ±0,154 >99,9 Ardhianto et al., 2024 Sumber : Ardhianto et al ., 2024

PENGEMBANGAN SYSTEM BARU SOLAR PV AS A SOURCE OF ELECTRICITY FOR THE ELECTROCHEMICAL PROCESS

PENGEMBANGAN SYSTEM BARU SOLAR PV AS A SOURCE OF ELECTRICITY FOR THE ELECTROCHEMICAL PROCESS

PENGEMBANGAN SYSTEM BARU SOLAR PV AS A SOURCE OF ELECTRICITY FOR THE ELECTROCHEMICAL PROCESS

EC AS STRUVITE Sumber: M. Ngatiman et al., 2021 The study has confirmed that the crystal deposit found in anaerobic digester tank of a POME treatment facility in a palm oil mill as struvite mineral. The formation of POME struvite was attributed to the presence of Mg 2+ , NH4+ and PO43− in the POME.

TERIMA KASIH
Tags