OPTIMIZATION TECHNIQUES IN PHARMACEUTICAL SCIENCES

1,127 views 68 slides Apr 15, 2024
Slide 1
Slide 1 of 68
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68

About This Presentation

Lecture notes


Slide Content

CONTENTS
◦CONCEPT OF OPTIMIZATION
◦OPTIMIZATION PARAMETERS
◦CLASSICAL OPTIMIZATION
◦STATISTICAL DESIGN
◦DESIGN OF EXPERIMENT
◦OPTIMIZATION METHODS
2

INTRODUCTION
◦ThetermOptimizeisdefinedas“tomakeperfect”.
◦Itisusedinpharmacyrelativetoformulationand
processing
◦Involvedinformulatingdrugproductsinvarious
forms
◦Itistheprocessoffindingthebestwayofusingthe
existingresourceswhiletakingintotheaccountofall
thefactorsthatinfluencesdecisionsinanyexperiment
3

◦Finalproductnotonlymeetstherequirementsfrom
thebio-availabilitybutalsofromthepracticalmass
productioncriteria
◦Pharmaceuticalscientist-tounderstandtheoretical
formulation.
◦Targetprocessingparameters–rangesforeach
excipients&processingfactors
17 August 2012 KLE College of Pharmacy, Nipani. 4
INTRODUCTION

INTRODUCTION
◦Indevelopmentprojects,onegenerallyexperiments
byaseriesoflogicalsteps,carefullycontrollingthe
variables&changingoneatatime,untila
satisfactorysystemisobtained
◦It is not a screening technique.
5

Optimization
It is necessary because,
1. It reduces the cost.
2. It provides safety and reduces the error.
3. It provides innovation and efficacy.
4. It saves the time.

Optimization parameters
Optimization parameters
Problem types Variable
Constrained Unconstrained
Dependent Independent
7

Optimization parameters
VARIABLES
Independent Dependent
Formulating Processing
Variables Variables
8

Optimization parameters
◦Independentvariablesorprimaryvariables:Formulationsand
processvariablesdirectlyundercontroloftheformulator.These
includesingredients,Mixingtime
◦Dependentorsecondaryvariables:Thesearetheresponsesofthein
progressmaterialortheresultingdrugdeliverysystem.Itistheresult
ofindependentvariables.
◦Ifgreaterthevariablesinagivensystem,thengreaterwillbethe
complicatedjobofoptimization.
◦Butregardlessoftheno.ofvariables,therewillberelationshipbetween
agivenresponseandindependentvariables.Onceweknowthis
relationshipforagivenresponse,thenwillabletodefinearesponse
surface
9

Optimization parameters
◦Relationshipbetweenindependentvariablesand
responsedefinesresponsesurface
◦Representing>2becomesgraphicallyimpossible
◦Higherthevariables,higherarethecomplications
henceitistooptimizeeach&everyone.
10

Optimization parameters
Responsesurfacerepresentingtherelationshipbetweentheindependentvariables
X
1andX
2andthedependentvariableY.
11

Classic optimization
◦It involves application of calculus to basic problem for
maximum/minimum function.
◦Limited applications
i. Problems that are not too complex
ii. They do not involve more than two variables
For more than two variables graphical representation is
impossible
It is possible mathematically
12

Graph Representing The Relation Between
The Response Variable And Independent Variable
13

Classic optimization
Using calculus the graph obtained can be solved.
Y = f (x)
When the relation for the response y is given as the
function of two independent variables,x
1&X
2
Y = f(X
1, X
2)
The above function is represented by contour plots on
which the axes represents the independent variables x
1&
x
2
14

Overall Plan of Optimization

Statistical design
Techniquesuseddividedintotwotypes.
Experimentationcontinuesasoptimizationproceeds
Itisrepresentedby
1. Evolutionaryoperations(EVOP)
2. Simplexmethods.
 Experimentationiscompletedbeforeoptimizationtakesplace.Itis
representedby
1. Classicmathematical
2. Searchmethods.
16

Evolutionaryoperations
◦It is the one of the most widely used methods of experimental
optimization in fields other than pharmaceutical technology is the
evolutionary operation(EVOP),
◦It is well suited to production situation.
◦The basic idea is that the production procedure(formulation and
process) is allowed to evolve to the optimum by careful planning
and constant repetition.

Method: This process is run in a such a way that
A. It produces a product that meets all specifications.
B. Simultaneously, it generates information on product
improvement.
Experimenter makes a very small change in the
formulation or process but makes it so many times i.e.,
repeatesthe experiment so many times.
Then he or she can be able to determine statistically
whether the product has improved.
And the experimenter makes further any other
change in the same direction, many times and notes
the results
Evolutionary operations

Evolutionary operations
◦This continues until further changes do not
improve the product or perhaps become
detrimental.
◦Applications:
1. It was applied to tablets by Rubinstein.
2. It has also been applied to an inspection
system for parenteral products.
Drawbacks:
1. It is impractical and expensive to use.
2. It is not a substitute for good laboratory scale
investigation.

Simplex method:
◦It is most widely applied technique.
◦It was proposed by Spendley et.al.
◦This technique has even wider appeal in areas other than formulation
and processing.
◦A good example to explain its principle is the application to the
development of an analytical method i.e., a continuous flow anlayzer,
it was predicted by Deming and king.
◦Simplex method is a geometric figure that has one or more point than
the number of factors.
◦If two factors or any independent variables are there, then simplex is
represented triangle.
◦Once the shape of a simplex has been determined, the method can
employ a simplex of fixed size or of variable sizes that are determined
by comparing the magnitude of the responses after each successive
calculation.

Statistical design
◦Forsecondtypeitisnecessarythattherelationbetween
anydependentvariableandoneormoreindependent
variableisknown.
◦Therearetwopossibleapproachesforthis
◦Theoreticalapproach-Iftheoreticalequationis
known,noexperimentationisnecessary.
◦Empiricalorexperimentalapproach–Withsingle
independentvariableformulatorexperimentsatseveral
levels.
21

Statistical design
Therelationshipwithsingleindependentvariablecan
beobtainedby
Simpleregressionanalysisor
Leastsquaresmethod.
Therelationshipwithmorethanoneimportant
variablecanbeobtainedby
Statisticaldesignofexperimentand
Multilinearregressionanalysis.
Mostwidelyusedexperimentalplanisfactorial
design
22

TERMS USED
FACTOR:Itisanassignedvariablesuchasconcentration,
Temperatureetc..,
 Quantitative:Numericalfactorassignedtoit
Ex;Concentration-1%,2%,3%etc..
 Qualitative:Whicharenotnumerical
Ex;Polymergrade,humidityconditionetc
LEVELS:Levelsofafactorarethevaluesordesignations
assignedtothefactor
23
FACTOR LEVELS
Temperature 30
0
, 50
0
Concentration 1%, 2%

TERMS USED
RESPONSE:Itisanoutcomeoftheexperiment.
Itistheeffecttoevaluate.
Ex:Disintegrationtimeetc..,
EFFECT:Itisthechangeinresponsecausedbyvaryingthe
levels
Itgivestherelationshipbetweenvariousfactors&levels
INTERACTION:Itgivestheoveralleffectoftwoormore
variables
Ex:Combinedeffectoflubricantandglidantonhardnessof
thetablet
24

TERMS USED
Optimizationbymeansofanexperimentaldesign
maybehelpfulinshorteningtheexperimenting
time.
Thedesignofexperimentsisastructured,
organisedmethodusedtodeterminetherelationship
betweenthefactorsaffectingaprocessandtheoutput
ofthatprocess.
StatisticalDOEreferstotheprocessofplanningthe
experimentinsuchawaythatappropriatedatacanbe
collectedandanalysedstatistically.
25

TYPES OF EXPERIMENTAL DESIGN
Completely randomised designs
Randomised block designs
Factorial designs
Full
Fractional
Response surface designs
Central composite designs
Box-Behnken designs
Adding centre points
Three level full factorial designs
26

TYPES OF EXPERIMENTAL DESIGN
CompletelyrandomisedDesigns
Theseexperimentcomparesthevaluesofaresponse
variablebasedondifferentlevelsofthatprimaryfactor.
Forexample,ifthereare3levelsoftheprimaryfactorwith
eachleveltoberun2timesthenthereare6factorialpossible
runsequences.
Randomisedblockdesigns
Forthisthereisonefactororvariablethatisofprimary
interest.
Tocontrolnon-significantfactors,animportanttechniquecalled
blockingcanbeusedtoreduceoreliminatethecontribitionof
thesefactorstoexperimentalerror.
27

TYPES OF EXPERIMENTAL DESIGN
Factorial design
Full
•Used for small set of factors
Fractional
•It is used to examine multiple factors efficiently with fewer runs than
corresponding full factorial design
Types of fractional factorial designs
Homogenous fractional
Mixed level fractional
Box-Hunter
Plackett-Burman
Taguchi
Latin square
28

TYPES OF EXPERIMENTAL DESIGN
Homogenousfractional
Usefulwhenlargenumberoffactorsmustbe
screened
Mixedlevelfractional
Usefulwhenvarietyoffactorsneedtobeevaluated
formaineffectsandhigherlevelinteractionscanbe
assumedtobenegligible.
Box-hunter
Fractionaldesignswithfactorsofmorethantwolevels
canbespecifiedashomogenousfractionalormixed
levelfractional
29

Plackett-Burman
Itisapopularclassofscreeningdesign.
Thesedesignsareveryefficientscreeningdesigns
whenonlythemaineffectsareofinterest.
Theseareusefulfordetectinglargemaineffects
economically,assumingallinteractionsarenegligible
whencomparedwithimportantmaineffects
Usedtoinvestigaten-1variablesinnexperiments
proposingexperimentaldesignsformorethanseven
factorsandespeciallyforn*4experiments.
30
TYPES OF EXPERIMENTAL DESIGN

Taguchi
ItissimilartoPBDs.
Itallowsestimationofmaineffectswhileminimizing
variance.
Latinsquare
Theyarespecialcaseoffractionalfactorialdesign
wherethereisonetreatmentfactorofinterestand
twoormoreblockingfactors
31
TYPES OF EXPERIMENTAL DESIGN

Response surface designs
Thismodelhasquadraticform
Designsforfittingthesetypesofmodelsareknown
asresponsesurfacedesigns.
Ifdefectsandyieldaretheouputsandthegoalisto
minimisedefectsandmaximiseyield
32
γ=β
0+ β
1X
1+ β
2X
2+….β
11X
1
2
+ β22X
2
2

Three-level full factorial designs
Itiswrittenas3
k
factorialdesign.
Itmeansthatkfactorsareconsideredeachat3
levels.
Theseareusuallyreferredtoaslow,intermediate&
highvalues.
Thesevaluesareusuallyexpressedas0,1&2
Thethirdlevelforacontinuousfactorfacilitates
investigationofaquadraticrelationshipbetween
theresponseandeachofthefactors
33

FACTORIAL DESIGN
Thesearethedesignsofchoiceforsimultaneous
determinationoftheeffectsofseveralfactors&
theirinteractions.
Usedinexperimentswheretheeffectsofdifferent
factorsorconditionsonexperimentalresultsaretobe
elucidated.
Twotypes
Fullfactorial-Usedforsmallsetoffactors
Fractionalfactorial-Usedforoptimizingmore
numberoffactors
34

LEVELS OF FACTORS IN THIS FACTORIAL
DESIGN
FACTOR LOWLEVEL(mg) HIGH
LEVEL(mg)
A:stearate 0.5 1.5
B:Drug 60.0 120.0
C:starch 30.0 50.0
35

EXAMPLE OF FULL FACTORIAL EXPERIMENT
Factor
combination
StearateDrugStarchResponse
Thickness
Cm*10
3
(1) _ _ _ 475
a + _ _ 487
b _ + _ 421
ab + + _ 426
c _ _ + 525
ac + _ + 546
bc _ + + 472
abc + + + 522
17 August 2012 KLE College of Pharmacy, Nipani. 36

Calculation of main effect of A (stearate)
The main effect for factor A is
 {-(1)+a-b+ab-c+ac-bc+abc] X 10
-3
Main effect of A =
=
= 0.022 cm
37
4
a + ab + ac + abc
4
_
(1) + b + c + bc
4
[487 + 426 + 456 + 522 –(475 + 421 + 525 + 472)]10
-3
EXAMPLE OF FULL FACTORIAL EXPERIMENT

EFFECT OF THE FACTOR STEARATE
38
470
480
490
500
0.5 1.5
Average = 473 * 10
-3
Average = 495 * 10
-3

STARCH X STEARATE INTERACTION
39
Stearate
Thickness
Starch
450
500
450
500

General optimization
ByMRAtherelationshipsaregeneratedfrom
experimentaldata,resultingequationsareonthebasis
ofoptimization.
Theseequationdefinesresponsesurfaceforthesystem
underinvestigation
Aftercollectionofalltherunsandcalculatedresponses
,calculationofregressioncoefficientisinitiated.
Analysisofvariance(ANOVA)presentsthesumofthe
squaresusedtoestimatethefactormaineffects.
40

FLOW CHART FOR OPTIMIZATION
41

Applied optimization methods
Evolutionary operations
Simplex method
Lagrangianmethod
Search method
Canonical analysis
42

Evolutionary operations (evop)
Itisamethodofexperimentaloptimization.
Techniqueiswellsuitedtoproductionsituations.
Smallchangesintheformulationorprocessaremade
(i.e.,repeatstheexperimentsomanytimes)&statistically
analyzedwhetheritisimproved.
Itcontinuesuntilnofurtherchangestakesplacei.e.,ithas
reachedoptimum-thepeak
43

Evolutionary operations (evop)
AppliedmostlytoTABLETS.
Productionprocedureisoptimizedbycareful
planningandconstantrepetition
Itisimpracticalandexpensivetouse.
Itisnotasubstituteforgoodlaboratoryscale
investigation
44

Simplex method
Itisanexperimentalmethodappliedfor
pharmaceuticalsystems
Techniquehaswiderappealinanalyticalmethod
otherthanformulationandprocessing
Simplexisageometricfigurethathasonemore
pointthanthenumberoffactors.
Itisrepresentedbytriangle.
Itisdeterminedbycomparingthemagnitudeofthe
responsesaftereachsuccessivecalculation
45

Graph representing
the simplex movements to the optimum conditions
46

Simplex method
Thetwoindependentvariablesshowpumpspeedsfor
thetworeagentsrequiredintheanalysisreaction.
Initialsimplexisrepresentedbylowesttriangle.
Theverticesrepresentsspectrophotometricresponse.
Thestrategyistomovetowardsabetterresponseby
movingawayfromworstresponse.
AppliedtooptimizeCAPSULES, DIRECT
COMPRESSION TABLET(acetaminophen),liquid
systems(physicalstability)
47

Lagrangianmethod
It represents mathematical techniques.
It is an extension of classic method.
It is applied to a pharmaceutical formulation and
processing.
This technique follows the second type of statistical
design
Limited to 2 variables -disadvantage
48

Steps involved
Determine objective formulation
Determine constraints.
Change inequality constraints to equality constraints.
Form the Lagrange function F:
Partially differentiate the lagrange function for each
variable & set derivatives equal to zero.
Solve the set of simultaneous equations.
Substitute the resulting values in objective functions
49

Example
Optimization of a tablet.
phenyl propranolol(active ingredient)-kept constant
X1 –disintegrate (corn starch)
X2 –lubricant (stearic acid)
X1 & X2 are independent variables.
Dependent variables include tablet hardness, friability
,volume, invitro release rate e.t.c..,
50

Example
Polynomial models relating the response variables to
independents were generated by a backward stepwise
regression analysis program.
Y= B
0
+B
1
X
1
+B
2
X
2
+B
3
X
1
2
+B
4
X
2
2
+B+
5
X
1
X
2
+B
6
X
1
X
2
+ B
7
X
1
2
+B
8
X
1
2
X
2
2
Y –Response
B
i–Regression coefficient for various terms containing
the levels of the independent variables.
X –Independent variables
51

Tablet formulations
Formulation
no,.
Drug Dicalcium
phosphate
Starch Stearic acid
1 50 326 4(1%) 20(5%)
2 50 246 84(21%) 20
3 50 166 164(41%) 20
4 50 246 4 100(25%)
5 50 166 84 100
6 50 86 164 100
7 50 166 4 180(45%)
52

Tablet formulations
Constrained optimization problem is to locate the levels of
stearic acid(x
1) and starch(x
2).
This minimize the time of invitrorelease(y
2),average
tablet volume(y
4), average friability(y
3)
To apply the lagrangianmethod, problem must be
expressed mathematically as follows
Y
2= f
2(X
1,X
2)-invitrorelease
Y
3= f
3(X
1,X
2)<2.72-Friability
Y
4= f
4(x
1,x
2) <0.422-avg tab.vol
53

CONTOUR PLOT FOR TABLET HARDNESS
54

GRAPH OBTAINED BY SUPER IMPOSITION OF TABLET
HARDNESS & DISSOLUTION
56

Tablet formulations
57

Search method
Itisdefinedbyappropriateequations.
Itdonotrequirecontinuityordifferentiabilityof
function.
Itisappliedtopharmaceuticalsystem
Foroptimization2majorstepsareused
Feasibilitysearch-usedtolocatesetofresponse
constraintsthatarejustatthelimitofpossibility.
Gridsearch–experimentalrangeisdividedinto
gridofspecificsize&methodicallysearched
58

Steps involved in search method
Select a system
Select variables
Perform experiments and test product
Submit data for statistical and regression analysis
Set specifications for feasibility program
Select constraints for grid search
Evaluate grid search printout
59

Example
Tablet formulation
60
Independent variables Dependent variables
X1Diluent ratio Y1 Disintegration time
X2 compressional force Y2 Hardness
X3 Disintegrant level Y3 Dissolution
X4 Binder level Y4 Friability
X5 Lubricant level Y5 weight uniformity

Example
Fiveindependentvariablesdictatestotalof32
experiments.
Thisdesignisknownasfive-factor,orthagonal,
central,composite,secondorderdesign.
First16formulationsrepresentahalf-factorialdesign
forfivefactorsattwolevels.
Thetwolevelsrepresentedby+1&-1,analogousto
high&lowvaluesinanytwolevelfactorial.
61

Translation of statistical design in to physical units
Experimental conditions
62
Factor -1.54eu -1 eu Base0 +1 eu +1.547eu
X
1=
ca.phos/lactose
24.5/55.5 30/50 40/40 50/30 55.5/24.5
X
2= compression
pressure( 0.5 ton)
0.25 0.5 1 1.5 1.75
X
3= corn starch
disintegrant
2.5 3 4 5 5.5
X
4= Granulating
gelatin(0.5mg)
0.2 0.5 1 1.5 1.8
X
5= mg.stearate
(0.5mg)
0.2 0.5 1 1.5 1.8

Translation of statistical design in to physical units
Againformulationswerepreparedandare
measured.
Thenthedataissubjectedtostatistical
analysisfollowedbymultipleregression
analysis.
Theequationusedinthisdesignissecond
orderpolynomial.
y =
1
a
0
+a
1
x
1
+…+a
5
x
5
+a
11
x
1
2
+…+a
55
x
2
5
+a
12
x
1
x
2
+a
13
x
1
x
3
+a
45
x
4
x
5
63

Translation of statistical design in to physical units
Amultivariantstatisticaltechniquecalledprinciplecomponentanalysis(PCA)is
usedtoselectthebestformulation.
PCAutilizesvariance-covariancematrixfortheresponsesinvolvedtodetermine
theirinterrelationship.
64

PLOT FOR A SINGLE VARIABLE
65

PLOT OF FIVE VARIABLES
66

PLOT OF FIVE VARIABLES
67

ADVANTAGES OF SEARCH METHOD
Ittakesfiveindependentvariablesintoaccount.
Personsunfamiliarwithmathematicsof
optimization&withnopreviouscomputer
experiencecouldcarryoutanoptimizationstudy.
68

Important Questions
Classic optimization
Define optimization and optimization
methods
Optimization using factorial design
Concept of optimization and its parameters
Importance of optimization techniques in
pharmaceutical processing & formulation
Importance of statistical design
69

REFERENCE
Modern pharmaceutics-vol 121
Textbook of industrial pharmacy by sobha rani R.Hiremath.
Pharmaceutical statistics
Pharmaceutical characteristics –Practical and clinical applications
www.google.com
70