OR sec3fffffffffffffffffffffffffffffffffffffdgfgf.pptx

dffffftrrf 6 views 26 slides Jul 22, 2024
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

OR


Slide Content

Operation Research: Algebraic method(simplex) Section 3 Dr. Abeer Saber

2 Linear programming problems Graphical method Algebraic method(Simplex) Simplex solution methods: Simplex Big M 2 Phase Dual model

3 solution:- 2x1+x2+3x3 ≥ 6 x1+2x2+4x3 ≥8 3x1+x2-2x3 ≥4 Z = x1+x2+3x3 A = X1 2 1 3 1 X3 3 4 -2 3 X2 1 2 1 1 RHS 6 8 4 z X1 2 1 3 6 X3 3 1 -2 4 X2 1 2 4 8 RHS 1 1 3 z =  

4 Solution:- 2x1+x2+3x3 ≤ 6 x1+2x2+x3 ≤1 3x1+4x2-2x3 ≤3 Z= 6x1+8x2+4x3 x1,x2,x3 ≥0 2x1+x2+3x3 ≤ 6 x1+2x2+x3 ≤1 3x1+4x2-2x3 ≤3 Z= 6x1+8x2+4x3 x1,x2,x3 ≥0 2x1+x2+3x3 +s1 = 6 x1+2x2+x3 +s2 = 1 3x1+4x2-2x3 +s3 =3 Z-6x1-8x2-4x3 =0 x1,x2,x3 ≥0

5 Solution:- 1 ½ ¾

6 Solution:-

7 Solution:-

8 Solution:-

9 Solution:-

10 Solution:- 1/3 1 1 -2

11 Solution:-

12 Solution:-

13 Solution:-

14 Solution:- Optimal solution is when x1=4/3 x2= 10/3 x3=0 z= 14/3 4/3 + 10/3 + 0 = 14/3

Task Minimize: Z= 12x1 + 16x2 Subject to: x1+2x2 ≥ 40 X1+x2 ≥ 30 x 1,x2 ≥ 0

16 Big-M method Maximization (Z) = x1-x2+3x3 Subject to: x1+x2 ≤ 20 x1+x3 =5 x2+x3 ≥10 x1,x2,x3 ≥0

17 Big-M method To convert to standard form ≤ add a slack variable ≥ subtract surplus variable and add an artificial variable = add an artificial variable

18 Solution:- X1+x2+s1 =20 X1+x3+a1 =5 X2+x3-s2+a2 =10 Z=x1-x2+3x3+0s1+0s3-ma1-ma2

19 Solution:- Calculating Z Z = (1*0) + (1*-M) + (0*-M) = -M

20 Solution:- After setting up the table we need to determine a pivot column and a pivot row as simplex method We choose the pivot column according to largest M value 5 10

21 Solution:-

22 Solution:-

23 Solution:- -2-M

24 Solution:- 20 5 -2-M

25 Solution:- X1=0 x2=5 x3=5

Task Maximize: Z= x1 + x2 Subject to: 2x1+5x2 ≤ 6 X1+x2 ≥2 x 1,x2 ≥ 0
Tags