Orbital_Mechnics_and_Basics_Introduction.ppt

manasa90145 5 views 27 slides Sep 16, 2025
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

orbital mechanics and orbit perturbations in satellite communications


Slide Content

Basic Orbital Mechanics
Dr. Andrew Ketsdever
MAE 5595

Conic Sections
EccentricityConic
= 0 Circle
0 - 1 Ellipse
= 1 Parabola
> 1 Hyperbola

Elliptical Orbit Geometry

Conic Sections
aR
V
22
2

 
R
V
circular

Classical Orbital Elements
•Semi-Major Axis, a
–Size
•Eccentricity, e
–Shape
a2


a
c
e
2
2



3
2
a
Period Kepler’s 3
rd
Law

Classical Orbital Elements
•Inclination
–Tilt
InclinationOrbit
= 90º Polar
0º or 180ºEquatorial
0º - 90ºPrograde
90º - 180ºRetrograde
h
h
i
Z
cos

Classical Orbital Elements
•Right Ascension of
the Ascending Node
(RAAN)
hKn


ˆ
n
n
X
cos
1800 then ,0n If
y

063180 then ,0n If
y 

Classical Orbital Elements
•Argument of Perigee
ne
en


cos
1800 then ,0e If
Z  
063180 then ,0e If
Z
 

Classical Orbital Elements
•True Anomaly
eR
Re


cos
1800 then 0, )VR( If  

063180 then 0, )VR( If  


Computing COEs
•From a R and V vector
–Can compute the 6 COEs
–Also works in reverse (given COEs compute
R and V)
–Example:
sec
km

ˆ
0
ˆ
5.7
ˆ
0
km
ˆ
7500
ˆ
0
ˆ
0
KJIV
KJIR



COEs
•a = 7965.1 km
•e = 0.0584
•i = 90º
 = 270º
 = 90º
 = 0º
•Mission: Probably remote sensing or a spy
satellite because it’s in a low, polar orbit.

Ground Tracks
Ground Track Slides Courtesy of Major David French

COE Determination
Semimajor axis
Δ longitude
ΔN
P =
ΔN
15º / hr


3
a
2P

COE Determination
Eccentricity

COE Determination
Inclination
i = highest latitude

COE Determination
Argument of Perigee
ω = 90º

COE Determination
True Anomaly

Orbit Examples

Molniya

Geostationary

Geosynchronous

e = 0
e = 0
i = 0
Geosynchronous
e = 0.4
 = 180
e = 0.6
 = 90

Orbit Prediction
•Kepler’s Problem
–If we know where a satellite (or
planet) is today, where in its orbit will
it be tomorrow?
–Kepler devised a series of
mathematical expressions to solve
this particular problem
•Eccentric Anomaly
•Mean Anomaly
•True Anomaly
II. The line joining the
planet to the Sun
sweeps out equal areas
in equal times as the
planet travels around
the ellipse.
 
               

Orbit Prediction
•Kepler defined the
Eccentric Anomaly to
relate elliptical motion
to circular motion
•He also defined Mean
Anomaly to make the
circular motion
constant
•Convert unsteady
elliptical motion into
unsteady circular
motion into steady
circular motion…

Orbit Prediction

180or 0 for ME
plane-half same in the always are ,,
 
ME

Orbital Prediction
•Given
a = 7000 km
e = 0.05
= 270º
Find the time of flight to 
final
= 50º

Orbital Prediction
•n = 0.001078 rad/sec
•E
initial = 272.87º
•E
future = 47.84º
•M
initial = 275.73º
•M
future = 45.72º
•TOF = 2104.58 sec or
35.08 min
3
a
n




cos1
cos
cos
e
e
E



EeEM sin
n
kMM
TOF
if
2