Conic Sections
aR
V
22
2
R
V
circular
Classical Orbital Elements
•Semi-Major Axis, a
–Size
•Eccentricity, e
–Shape
a2
a
c
e
2
2
3
2
a
Period Kepler’s 3
rd
Law
Classical Orbital Elements
•Inclination
–Tilt
InclinationOrbit
= 90º Polar
0º or 180ºEquatorial
0º - 90ºPrograde
90º - 180ºRetrograde
h
h
i
Z
cos
Classical Orbital Elements
•Right Ascension of
the Ascending Node
(RAAN)
hKn
ˆ
n
n
X
cos
1800 then ,0n If
y
063180 then ,0n If
y
Classical Orbital Elements
•Argument of Perigee
ne
en
cos
1800 then ,0e If
Z
063180 then ,0e If
Z
Classical Orbital Elements
•True Anomaly
eR
Re
cos
1800 then 0, )VR( If
063180 then 0, )VR( If
Computing COEs
•From a R and V vector
–Can compute the 6 COEs
–Also works in reverse (given COEs compute
R and V)
–Example:
sec
km
ˆ
0
ˆ
5.7
ˆ
0
km
ˆ
7500
ˆ
0
ˆ
0
KJIV
KJIR
COEs
•a = 7965.1 km
•e = 0.0584
•i = 90º
= 270º
= 90º
= 0º
•Mission: Probably remote sensing or a spy
satellite because it’s in a low, polar orbit.
Ground Tracks
Ground Track Slides Courtesy of Major David French
COE Determination
Semimajor axis
Δ longitude
ΔN
P =
ΔN
15º / hr
3
a
2P
COE Determination
Eccentricity
COE Determination
Inclination
i = highest latitude
COE Determination
Argument of Perigee
ω = 90º
COE Determination
True Anomaly
Orbit Examples
Molniya
Geostationary
Geosynchronous
e = 0
e = 0
i = 0
Geosynchronous
e = 0.4
= 180
e = 0.6
= 90
Orbit Prediction
•Kepler’s Problem
–If we know where a satellite (or
planet) is today, where in its orbit will
it be tomorrow?
–Kepler devised a series of
mathematical expressions to solve
this particular problem
•Eccentric Anomaly
•Mean Anomaly
•True Anomaly
II. The line joining the
planet to the Sun
sweeps out equal areas
in equal times as the
planet travels around
the ellipse.
Orbit Prediction
•Kepler defined the
Eccentric Anomaly to
relate elliptical motion
to circular motion
•He also defined Mean
Anomaly to make the
circular motion
constant
•Convert unsteady
elliptical motion into
unsteady circular
motion into steady
circular motion…
Orbit Prediction
180or 0 for ME
plane-half same in the always are ,,
ME
Orbital Prediction
•Given
a = 7000 km
e = 0.05
= 270º
Find the time of flight to
final
= 50º
Orbital Prediction
•n = 0.001078 rad/sec
•E
initial = 272.87º
•E
future = 47.84º
•M
initial = 275.73º
•M
future = 45.72º
•TOF = 2104.58 sec or
35.08 min
3
a
n
cos1
cos
cos
e
e
E
EeEM sin
n
kMM
TOF
if
2