Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V TO-220 New IR

853 views 7 slides Aug 11, 2020
Slide 1
Slide 1 of 7
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7

About This Presentation

Original IGBT N-CHANNEL IRG7IC28U IRG71C28U G7IC28U G71C28U 71C28 225A 600V TO-220 New IR


Slide Content

www.irf.com 1
09/02/2010
IRG7IC28UPbF
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low V
CE(on) and low E
PULSE
TM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Features
θ Advanced Trench IGBT Technology
θ Optimized for Sustain and Energy Recovery
circuits in PDP applications
θ Low V
CE(on) and Energy per Pulse (E
PULSE
TM )
for improved panel efficiency
θ High repetitive peak current capability
θ Lead Free package

E
C
G
n-channel
GC E
Gate Collector Emitter


θ



Absolute Maximum Ratings
Parameter Units
V
GE Gate-to-Emitter Voltage V
I
C @ T
C = 25°C Continuous Collector Current, V
GE @ 15V A
I
C @ T
C = 100°C Continuous Collector, V
GE @ 15V
I
RP @ T
C = 25°C Repetitive Peak Current
P
D @T
C = 25°C Power Dissipation W
P
D @T
C = 100°C Power Dissipation
Linear Derating Factor W/°C
T
J Operating Junction and °C
T
STG Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw N
Thermal Resistance
Parameter Typ. Max. Units
R
θJC Junction-to-Case θ ––– 3.1 °C/W
R
θJA
Junction-to-Ambient θ ––– 65
Max.
12
225
25
±30
300
-40 to + 150
10lb
≤in (1.1N≤m)
40
16
0.32
V
CE min 600 V
V
CE(ON) typ. @ I
C = 40A 1.70 V
I
RP max @ T
C= 25°C 225 A
T
J max 150 °C
Key Parameters


2 www.irf.com
θ≤∆ΒΩτ
θΒHalf sine wave with duty cycle <= 0.02, ton=1.0µsec.
≤ R
θ is measured at T
J of approximately 90θ≤∆
∆ Pulse width ≤ 400µs; duty cycle ≤ 2%.
Electrical Characteristics @ T
J = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
CES Collector-to-Emitter Breakdown Voltage 600 ––– ––– V
V
(BR)ECS Emitter-to-Collector Breakdown Voltage15 ––– ––– V
∆ΒV
CES/∆T
J Breakdown Voltage Temp. Coefficient ––– 0.57 ––– V/°C
––– 1.25 –––
––– 1.42 –––
1.70 1.95 V
––– 1.96 –––
––– 2.97 –––
––– 1.75 –––
V
GE(th) Gate Threshold Voltage 2.2 ––– 4.7 V
∆V
GE(th)/∆T
JGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
I
CES Collector-to-Emitter Leakage Current ––– 0.5 20
––– 30 ––– µA
––– 90
––– 305 –––
I
GES Gate-to-Emitter Forward Leakage ––– ––– 100 nA
Gate-to-Emitter Reverse Leakage ––– ––– -100
g
fe Forward Transconductance ––– 55 ––– S
Q
g Total Gate Charge ––– 70 ––– nC
Q
gc Gate-to-Collector Charge ––– 25 –––
t
d(on) Turn-On delay time ––– 30 ––– I C = 40A, V
CC = 400V
t
r Rise time ––– 35 ––– ns R
G = 22Ω, L=100µH
t
d(off) Turn-Off delay time ––– 260 ––– T J = 25°C
t
f Fall time ––– 145 –––
t
d(on) Turn-On delay time ––– 25 ––– I C = 40A, V
CC = 400V
t
r Rise time ––– 40 ––– ns R
G = 22Ω, L=100µH
t
d(off) Turn-Off delay time ––– 280 ––– T J = 150°C
t
f Fall time ––– 320 –––
t
st Shoot Through Blocking Time 100 ––– ––– ns
E
PULSE Energy per Pulse µJ
Human Body Model
Machine Model
C
ies Input Capacitance ––– 1880 –––
C
oes Output Capacitance ––– 75 ––– pF
C
res Reverse Transfer Capacitance ––– 45 –––
L
C Internal Collector Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
L
E Internal Emitter Inductance ––– 7.5 ––– from package
V
GE = 15V, I
CE = 160A
Static Collector-to-Emitter VoltageVCE(on)
V
GE = 15V, I
CE = 40A, T
J = 150°C
V
GE = 15V, I
CE = 40A
––– 930 –––
V
CE = 25V, I
CE = 40A
V
CE = 400V, I
C = 40A, V
GE = 15V
V
CC = 240V, R
G= 5.1Ω, T
J = 25°C
––– 770 –––
V
CC = 240V, V
GE = 15V, R
G= 5.1Ω
V
CE = V
GE, I
CE = 250µA
V
CE = 600V, V
GE = 0V
V
CE = 600V, V
GE = 0V, T
J = 150°C
V
GE = 30V
V
GE = -30V
V
CE = 600V, V
GE = 0V, T
J = 100°C
ƒ = 1.0MHz
and center of die contact
V
CE = 600V, V
GE = 0V, T
J = 125°C
L = 220nH, C= 0.40µF, V
GE = 15V
L = 220nH, C= 0.40µF, V
GE = 15V
V
CC = 240V, R
G= 5.1Ω, T
J = 100°C
Conditions
V
GE = 0V, I
CE = 1.0mA
Reference to 25°C, I
CE = 1.0mA
V
GE = 15V, I
CE = 70A
V
GE = 15V, I
CE = 12A
V
GE = 15V, I
CE = 24A
V
GE = 0V, I
CE = 1.0A
ESD
Class H1C (2000V)
(Per JEDEC standard JESD22-A114)
Class M4 (425V)
(Per EIA/JEDEC standard EIA/JESD22-A115)
V
CE = 30V
V
GE = 0V


www.irf.com 3
Fig 1. Typical Output Characteristics @ 25°C
Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C
Fig 2. Typical Output Characteristics @ 75°C
Fig 5. Typical Transfer Characteristics Fig 6. V
CE(ON) vs. Gate Voltage
0 2 4 6 8 10
V
CE
(V)
0
25
50
75
100
125
150
175
200
I
CE
(A)
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8.0V
V
GE
= 6.0V
0 2 4 6 8 10
V
CE
(V)
0
25
50
75
100
125
150
175
200
I
CE
(A)
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8.0V
V
GE
= 6.0V
0 2 4 6 8 101214
V
CE
(V)
0
25
50
75
100
125
150
175
200
I
CE
(A)
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8.0V
V
GE
= 6.0V
0 2 4 6 8 101214
V
CE
(V)
0
25
50
75
100
125
150
175
200
I
CE
(A)
V
GE
= 18V
V
GE
= 15V
V
GE
= 12V
V
GE
= 10V
V
GE
= 8.0V
V
GE
= 6.0V
246810
V
GE
, Gate-to-Emitter Voltage

(V)
0
25
50
75
100
125
150
175
200
I
CE
, Collector-to-Emitter Current

(A)
T
J
= 25°C
T
J
= 150°C
0 5 10 15 20
V
GE
, Voltage Gate-to-Emitter

(V)
1.2
1.4
1.6
1.8
2.0
V
CE
, Voltage Collector-to-Emitter

(V)
T
J
= 25°C
T
J
= 150°C
I
C
= 20A


4 www.irf.com
Fig 7. Maximum Collector Current vs. Case TemperatureFig 8. Typical Repetitive Peak Current vs. Case Temperature
Fig 10. Typical E
PULSE vs. Collector-to-Emitter VoltageFig 9. Typical EPULSE vs. Collector Current
Fig 11. E
PULSE vs. Temperature Fig 12. Forrward Bias Safe Operating Area
25 50 75 100 125 150
T
C
(°C)
0
5
10
15
20
25
I
C
(A)
25 50 75 100 125 150
Case Temperature (°C)
0
50
100
150
200
250
Repetitive Peak Current (A)
ton= 2µs
Duty cycle <= 0.05
Half Sine Wave
160 170 180 190 200 210 220 230 240
I
C
, Peak Collector Current (A)
450
500
550
600
650
700
750
800
850
900
950
Energy per Pulse (µJ)
V
CC
= 240V
L = 220nH
C = variable
100°C
25°C
200 205 210 215 220 225 230 235 240
V
CE,
Collector-to-Emitter Voltage (V)
450
500
550
600
650
700
750
800
850
900
950
Energy per Pulse (µJ)
L = 220nH
C = 0.4µF
100°C
25°C
20406080100120140160
T
J
, Temperature (ºC)
400
500
600
700
800
900
1000
1100
Energy per Pulse (µJ)
V
CC
= 240V
L = 220nH
t = 1µs half sine
C= 0.4µF
C= 0.3µF
C= 0.2µF
1.0 10 100 1000
V
CE
(V)
1
10
100
1000
I
C
(A)
1msec
10µsec
100µsec
Tc = 25°C
Tj = 150°C
Single Pulse


www.irf.com 5
Fig 13. Typical Capacitance vs. Collector-to-Emitter VoltageFig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 16. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 15 - Typ. Energy Loss vs. I
C
T
J = 150°C; L = 250µH; V
CE = 400V, R
G = 22Ω; V
GE = 15V
0 100 200 300 400 500
V
CE
,

Collector-toEmitter-Voltage(V)
10
100
1000
10000
100000
Capacitance (pF)
Cies
Coes
Cres
V
GS
= 0V, f = 1 MHZ
C
ies
= C
ge
+ C
gd
, C
ce
SHORTED
C
res
= C
gc
C
oes
= C
ce
+ C
gc
0 1020304050607080
Q
G
, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
16
V
GE
, Gate-to-Emitter Voltage (V)
V
CES
= 120V
V
CES
= 300V
V
CES
= 400V
I
C
= 40A
0 102030405060708090
I
C
(A)
0
1000
2000
3000
4000
5000
6000
Energy (µJ)
E
OFF
E
ON
1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100
t
1
, Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
Ci i/Ri
Ci= τi/Ri
τ
τ
C
τ
4
τ
4
R
4
R
4Ri (°C/W) τi (sec)
0.19973 0.000268
0.38341 0.002261
1.17794 0.154543
1.36892 2.511


6 www.irf.com
Fig 16a. t
st and E
PULSE Test Circuit Fig 16b. t st Test Waveforms
Fig 16c. E
PULSE Test Waveforms
1K
VCC
DUT
0
L
Fig. 17 - Gate Charge Circuit (turn-off)
DRI VER
DUT
L
C
VCC
RG
RG
B
A
Ipulse
Energy
V
CE
I
C Current
PULSE A
PULSE B
t
ST


www.irf.com 7
TO-220AB Full-Pak package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed for the Industrial
market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2010
The specifications set forth in this data sheet are the sole and
exclusive specifications applicable to the identified product,
and no specifications or features are implied whether by
industry custom, sampling or otherwise. We qualify our
products in accordance with our internal practices and
procedures, which by their nature do not include qualification
to all possible or even all widely used applications. Without
limitation, we have not qualified our product for medical use or
applications involving hi-reliability applications. Customers
are encouraged to and responsible for qualifying product to
their own use and their own application environments,
especially where particular features are critical to operational
performance or safety. Please contact your IR representative if
you have specific design or use requirements or for further
information.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
TO-220AB Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Full-Pak Part Marking Information











!"#$%&&"'()*)#$"+ &#!# $
#$,#-%!"&"%,./""


0