References
1.Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., & Inman, D. J. (2021). A review of vibration-based
damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning
applications.Mechanical systems and signal processing,147, 107077.
2.Dadras Eslamlou, A., & Huang, S. (2022). Artificial-neural-network-based surrogate models for structural health
monitoring of civil structures: A literature review.Buildings,12(12), 2067.
3.Gharehbaghi, V. R., Noroozinejad Farsangi, E., Noori, M., Yang, T. Y., Li, S., Nguyen, A., ... & Mirjalili, S. (2022). A
critical review on structural health monitoring: Definitions, methods, and perspectives.Archives of computational
methods in engineering,29(4), 2209-2235.
4.Lopes Jr, V., Park, G., Cudney, H. H., & Inman, D. J. (2000). Impedance-based structural health monitoring with
artificial neural networks.Journal of Intelligent Material Systems and Structures,11(3), 206-214.
5.HekmatiAthar, S., Taheri, M., Secrist, J., & Taheri, H. (2020). Neural network for structural health monitoring with
combined direct and indirect methods.Journal of Applied Remote Sensing,14(1), 014511-014511.
6.Etim, B., Al-Ghosoun, A., Renno, J., Seaid, M., & Mohamed, M. S. (2024). Machine learning-based modeling for
structural engineering: A comprehensive survey and applications overview.Buildings,14(11), 3515.
7.Altabey, W. A., & Noori, M. (2022). Artificial-intelligence-based methods for structural health monitoring.Applied
Sciences,12(24), 12726.
8.Gomez-Cabrera, A., & Escamilla-Ambrosio, P. J. (2022). Review of machine-learning techniques applied to structural
health monitoring systems for building and bridge structures.Applied Sciences,12(21), 10754.
9.Hassani, S., & Dackermann, U. (2023). A systematic review of advanced sensor technologies for non-destructive
testing and structural health monitoring.Sensors,23(4), 2204.