Pandas-Series Object.pptxydydfyffydyfudcu

ArchanaKeserwani 18 views 19 slides Aug 31, 2025
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

Fyycyx


Slide Content

Pandas- Creating Series Object Class XII Informatics Practices

Series Data Structure Represents One- Dimensional Array Homogeneous – Same data types Size immutable There are two components in Series i.e. Index & Series January February March April 1200 1500 2000 1900

Creating Series Object Series Object = pandas.Series () Coding for Empty Series import pandas as pd obj1= pd.Series () Import pandas as pd obj1= pd.Series ([5,10,15]) List Tuple String Dictionary

Creating Series Object Series Object = pandas.Series () Coding import pandas as pd obj1= pd.Series (range(5)) print(obj1) Coding for list import pandas as pd obj1= pd.Series ([5,10,15,20]) print(obj1) Index Data 1 1 2 2 3 3 4 4 Index Data 5 1 10 2 15 3 20

Series Data Structures ndarray Using function arange ( start,end,step value) import pandas as pd import numpy as np nda1= np.arange (3,13,3.5) obj1= pd.Series (nda1) print(obj1) 2. import pandas as pd import numpy as np obj1= pd.Series ( np.arange (3,13,3.5)) print(obj1) Index Data 3 1 6.5 2 10

Series Data Structures ndarray Using function linspace ( start,end,no . of elements) 1. import pandas as pd import numpy as np obj1= pd.Series ( np.linspace (24,64,5)) print(obj1) Index Data 24 1 34 2 44 3 54 4 64

Series Data Structures ndarray Using function tile ([list elements], no. of occurance / repeatition ) 1. import pandas as pd import numpy as np obj1= pd.Series ( np.tile ([3,5],2)) print(obj1) Index Data 3 1 5 2 3 3 5

Series Data Structures Data as python sequence Data as an ndarray Data as python dictionary

Data as python dictionary import pandas as pd obj1= pd.Series ({‘Jan’:31,’Feb’:28,’Mar’:31}) print(obj1) index data

Data as Scaler Value import pandas as pd obj1= pd.Series (50000,index=range(2020,2029,2)) print(obj1) data

Using Mathematical Function import pandas as pd import numpy as np a= np.arange (9,13) print(a) obj4= pd.Series (index= a,data =a*2) print(obj4)

Series Attributes import pandas as pd import numpy as np arr =[31,28,31,30] mon =[' Jan','Feb','Mar','Apr '] obj1= pd.Series (data= arr,index = mon ) obj2= pd.Series ([3.5,5,6.5,8]) obj3= pd.Series ([6.5,np.NaN,2.34]) print(obj3.values)

Series Attributes index values dtype shape size and itemsize hasnans dim

Indexing | Slicing | Manipulating Accessing individual Element obj1[2]=____ obj1[3]=____ obj1[4]=____ Slicing of Series object obj1[1:3]=____ obj1[1: ]=____ obj1[ : 2]=____ import pandas as pd obj1= pd.Series ([5,10,15,20]) print(obj1) Output - 0 5 1 10 2 15 3 20

Indexing | Slicing | Manipulating Modifying Series object’s value obj1[2]=40 obj1[3]=80 obj1[1:3]=50 Renaming an index obj1.index=[‘A’,’B’,’C’,’D’] import pandas as pd obj1= pd.Series ([5,10,15,20]) print(obj1) Output - 0 5 1 10 2 15 3 20

Head() & Tail() function obj1.head(2) = 5,10 obj1.tail(2)=15,20 obj1.head() obj1.tail() In this case it will give by default the first 5 elements of head and last 5 elements of tail import pandas as pd obj1= pd.Series ([5,10,15,20]) print(obj1) Output - 0 5 1 10 2 15 3 20

Vector Operations obj1+2 obj1*2 Output- 0 7 10 1 12 20 2 17 30 3 22 40 import pandas as pd obj1= pd.Series ([5,10,15,20]) print(obj1) Output - 0 5 1 10 2 15 3 20

Arithmetic on Series object obj1+obj2 Output- 0 7 1 15 2 19 23 obj2+obj3 Output- 0 5 1 11 2 NaN NaN import pandas as pd obj1= pd.Series ([5,10,15,20]) print(obj1) import pandas as pd obj2= pd.Series ([2,5,4,3]) print(obj2) import pandas as pd obj3= pd.Series ([3,6]) print(obj3)

Filtering Entries On the basis of True & False it filters the data or it checks the conditions and gives the output. import pandas as pd info= pd.Series ([30,41,52]) print(info>40) print(info[info>40])