REFERENCES (5/5)
[Saevaneeetal.,2015] Saevanee, H., Clarke, N.L. and Furnell, S.M., 2012. Multi-modal behavioural biometric authentication for mobile devices. In Information Security and Privacy
Research: 27th IFIP TC 11 Information Security and Privacy Conference, SEC 2012, Heraklion, Crete, Greece, June 4-6, 2012. Proceedings 27 (pp. 465-474). Springer Berlin.
[Shin,2016] Shin, D.H., 2016. Cross-platform users’ experiences toward designing interusable systems. International Journal of Human-Computer Interaction, 32(7), pp.503-514.
[Siegetal.,2007] Sieg, A., Mobasher, B. and Burke, R., 2007, November. Web search personalization with ontological user profiles. In Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management (pp. 525-534).
[Sleeman, 1985] Sleeman, D., 1985. UMFE: A user modelling front-end subsystem. International Journal of Man-Machine Studies, 23(1), pp.71-88.
[SosnovskyandDicheva,2010] Sosnovsky, S. and Dicheva, D., 2010. Ontological technologies for user modelling. International Journal of Metadata, Semantics and Ontologies,
5(1), pp.32-71.
[Trella et al., 2003] Trella, M., Conejo, R., Guzmán, E. and Bueno, D., 2003. An educational component based framework for web its development. InWeb Engineering:
International Conference, ICWE 2003 Oviedo, Spain, July 14–18, 2003 Proceedings 3(pp. 134-143). Springer Berlin Heidelberg.
[vanDamandvandeVelden,2015] Van Dam, J.W. and Van De Velden, M., 2015. Online profiling and clustering of Facebook users. Decision Support Systems, 70, pp.60-72.
[Verbertetal.,2012] Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I. and Duval, E., 2012. Context-aware recommender systems for learning: a survey
and future challenges. IEEE transactions on learning technologies, 5(4), pp.318-335.
[Voetal.,2021] Vo, D.V., Karnjana, J. and Huynh, V.N., 2021. An integrated framework of learning and evidential reasoning for user profiling using short texts.Information
Fusion,70, pp.27-42.
[Wahlster and Kobsa, 1989] Wahlster, W. and Kobsa, A., 1989. User models in dialog systems. User models in dialog systems, pp.4-34.
[Weietal.,2022] Chu, Y.W., Hosseinalipour, S., Tenorio, E., Cruz, L., Douglas, K., Lan, A. and Brinton, C., 2022, October. Mitigating biases in student performance prediction via
attention-based personalized federated learning. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management (pp. 3033-3042).
[Wenetal.,2021]Wen, H., Zhang, J., Lv, F., Bao, W., Wang, T. and Chen, Z., 2021, July. Hierarchically modeling micro and macro behaviors via multi-task learning for conversion
rate prediction. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 2187-2191).
[Wuetal.,2021] Wu, J., Liu, Q., Huang, Z., Ning, Y., Wang, H., Chen, E., Yi, J. and Zhou, B., 2021, April. Hierarchical personalized federated learning for user modeling. In
Proceedings of the Web Conference 2021 (pp. 957-968).
[Zhengetal.,2022] Zheng, Z., Qiu, Z., Xu, T., Wu, X., Zhao, X., Chen, E. and Xiong, H., 2022, April. CBR: context bias aware recommendation for debiasing user modeling and
click prediction. In Proceedings of the ACM Web Conference 2022 (pp. 2268-2276).
[Zhouetal.,2012] Zhou, X., Xu, Y., Li, Y., Josang, A. and Cox, C., 2012. The state-of-the-art in personalized recommender systems for social networking. Artificial Intelligence
Review, 37, pp.119-132.