Persistent fetal circulation

robinthomas716 3,272 views 50 slides May 03, 2017
Slide 1
Slide 1 of 50
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50

About This Presentation

Persistent Fetal Circulation: PPHN - Management, ECHMO.


Slide Content

PERSISTENT FETAL CIRCULATION By Dr Robin Thomas Resident in Pediatrics JJMMC, Davangere

Defn :Disruption of normal perinatal to neonatal circulatory transition-sustained elevation in Pulmonary vascular resistance . Risk for chronic pulmonary disease & neurodevelopmental disabilities. Incidence: 1-2 per 1000 live births. Perinatal risk factors: MSAF, Maternal condn - fever, anemia, pulmonary d/s Maternal D.M, U.T.I during pregnancy, SSRIs, aspirin, NSAIDS & C.S PERSISTENT PULMONARY HYPERTENSION OF THE NEWBORN

Rapid fall in pulmonary vascular resistance (PVR)- first breath & increase in systemic vascular resistance (SVR) –clamping of umbilical cord. Circulating biochemical mediators - increased arterial O2 content & pH & lowered PaCO2 –constriction of ductus - arteriosus & vasorelaxation of pulmonary circulation. Perinatal circulatory transition

Physiological events raise SVR relative to PVR –functional closure of foramen ovale . Persistent fetal circulation -mimics fetal circulation-PVR exceeds SVR & right to left hemodynamic shunting occurs tru foramen ovale or ductus arteriosus . Dimnished pulmonary perfusion & systemic hypoxemia.

Persistant fetal circulation

1.Severe fetal hypoxemia (Birth asphyxia ) –common association Prolonged fetal stress & hypoxemia –remodeling & abnormal muscularization of pulmonary arterioles. Acute birth asphyxia-release of vasoconstricting humoral factors & suppression of pulmonary vasodilators-pulmonary vasospasm. Risk factors

2.Pulmonary parenchymal diseases -surfactant deficiency, pneumonia, MAS. Fetus with advanced gestational age. 3.Abnormalities of pulmonary dvp . – PPHN Congenital diaphragmatic hernia, Porter syndrome, Pulmonary parenchymal hypoplasia -pruning of vascular tree. Alveolar capillary dysplasia- malalignment of pulmonary veins & arteries.

4.Myocardial dysfunction , myocarditis , intrauterine constriction of ductus arteriosus , severe congenital heart disease-PPHN. 5.Pneumonia or sepsis of bacterial or viral orgin -PPHN. Suppression of endogenous NO production. endotoxin mediated myocardial depression, pulmonary vasoconstriction assoc. with release of thromboxanes .

6.Familial recurrence-uncommon , infants with PPHN –low plasma levels of arginine & NO metabolites & specific polymorphism at 1,405 position of carbamoyl phosphate - synthetase gene .

1.Pulmonary vascular remodelling -abnormal muscularization of non muscular intra- acinar arteries with increased medial thickness of larger muscular arteries-decreased cross sectional area of pulmonary vascular bed & elevated PVR. Fetal hypoxemia-stimulus for pulmonary vascular remodelling . Pathophysiology

Humoral growth factors released by hypoxia damaged endothelial cells promote vasoconstriction & overgrowth of pulmonary vascular muscular media. Vascular changes –fetal exposure to NSAIDS- cause constriction of fetal ductus arteriosus & fetal pulmonary overcirculation .

2.Pulmonary hypoplasia Affects both alveolar & pulmonary arteriolar dvp .-congenital diaphragmatic hernia, oligohydramnios syndrome, Porter syndrome (renal agenesis). 3.Reversible pulmonary vasospasm Infants with nonfatal PPHN. Hypoxia induces pulmonary vasoconstriction – acidemia . Neural & humoral vasoactive substances.

Suppression of endogenous NO, prostacyclin or bradykinin production & release of thromboxanes (A2,B2) , leukotrienes (C4,D4)- increased PVR – Sepsis & hypoxemia . 4. Myocardial dysfunction with elevated PVR - 1.Right ventricular dysfunction- Intrauterine constriction of ductus arteriosus -post natal pulmonary hypertension, RV failure, atrial R-L shunt.

2.Left ventricular dysfunction-pulmonary venous hypertension & secondary pulmonary arterial hypertension-right to left shunting through ductus arteriosus . 5.Mechanical factors Cardiac output & blood viscosity. Low cardiac output-fewer pulmonary arteriolar channels & raises PVR. Hyperviscosity with polycythemia -reduces pulmonary microvasculature perfusion.

Physical examn -cyanosis, prom. Precordial impulse, single or narrowly split & accentuated S2 , systolic murmur. Invest. 1.Gradient of 10 % or more in oxygen saturation b/w preductal & postductal ABG or transcutaneous O2 saturation- ductus - arteriosus right to left hemodynamic shunt & absence of structural heart disease-PPHN Diagnosis

CXR -normal /assoc. pulmonary parenchymal d/s. ECG -RV predominance-cons. normal for age. ECHO -hemodynamic shunting, evaluate ventricular function, exclude congenital heart disease. TR or flattened ventricular septum in ECHO-PPHN.

Color doppler examn.-intracardiac or ductal hemodynamic shunting. Continuous wave doppler sampling of velocity of TR jet-estimate pulmonary artery presures .

Cyanotic congenital cardiac disease over PPHN: cardiomegaly grade3 murmur weak pulses active precordium pulmonary edema pulse differ.b /w upper & lower extremities persistent preductal & postductal arterial O2 tension less or equal to 40 mmHg.

Aim: reverse hypoxemia, improve pulmonary & systemic perfusion, preserve end organ function. Adequate respiratory support- normoxemia & neutral to slightly alkalotic acid base balance –facilitate normal perinatal circulatory transition. Management

1.Supplemental O2 : Hypoxia-powerful pulmonary vasoconstrictor Preductal & post ductal SaO2 should be monitored. Supplemental O2 –reduce abnormally elevated PVR, minimize end organ underperfusion & lactic acidemia . Maintain post ductal SaO2 >90%-ensure tissue oxygenation & <98% to avoid hyperoxemia .

2.Intubation & mechanical ventillation : Hypoxemia persists despite maximal O2 admns . or respiratory failure-marked hypercapnia & acidemia . Maintain PaO2 & PaCO2 values & avoid hyperoxia & hyperventilation. Target goals: SaO2 90-98%, PaCO2 40-50 mmHg, pH 7.30-7.40

a. PPHN with pulmonary parenchymal d/s- HFOV high frequency oscillatory ventillation or HFJV high frequency jet ventillation . HFJV-useful for meconium aspiration pneumonitis & air leak. HFOV-deliver iNO . b.Absence of pulmonary disease- High intrathoracic pressure impedes cardiac output & elevates PVR.

HFJV

HFOV

Strategy for mechanical ventillation -rapid, low pressure, & short inspiratory time-minimize elevated intrathoracic pressure. 3.iNO –produced by endothelial cells. diffuses into smooth muscle cells, increases intracellular cGMP , relaxes vascular smooth muscle & causes pulmonary vasodilation .

iNO –HFOV-doses of 1-20 parts per million- causes pulmonary vasodilation -not systemic- vasodilation –decreases PVR. Methemoglobinemia -serious potential toxicity of iNO Rx. Measure metHb levels 24 hrs after start of Rx. metHb levels>7% -reduce iNO Rebound hypoxemia-if iNO discontinued abruptly. iNO should be tapered very gradually.

Starting dose of iNO is 20ppm-delivered via ventilator circuit. As baby improves & inspired O2 conc.<50%- iNO is tapered by halving the dose. eg : 20 to10 to 5 ppm over a 12-24 hr period -gradually to 2 then 1 ppm . iNO –given in infants with PPHN & diffuse pulmonary disease by concomitant use of HFOV & surfactant treat.

Sildenafil Phosphodiesterase-5 inhibitor Increases endogenous NO by inhibiting metabolism-Rx for PPHN Randomized clinical trials awaited.

4.ECMO Absence of pulmonary hypoplasia -ECMO- life saving therapy for 75-85% infants with PPHN who fail conventional management or iNO . ECMO criteria- Alveolar arterial O2 difference (AaDO2) >600 or Oxygenation index(OI) >30 on two ABGs >30 min apart. Brief trial of HFOV or iNO instituted before ECMO.

Technique of life support for neonates –cardiac or respiratory failure-not responding to conventional therapy. Indications: Respiratory failure-reversible, Cardiac failure, E-CPR, Ex utero intra partum treatment to ECHMO. Contra. Irreversible brain damage, intraventricular & intraparenchymal hemorrhage, wt<1.5kg, gestat . age<34wk, congenital abn . severe coagulopathy , continuous CPR >1hr. ECMO

ECMO

ECMO - video

ECMO

5.Sedation & analgesia Fentanyl 1-4 micro gm/kg/hr infusion Morphine sulphate 0.05-0.1 mg/kg/hr infusion-infant should not be hypotensive . 6.Metabolic alkalosis Neutral to alkalotic pH-physiologic stimulus that reduces PVR. Normalize pulmonary gas exchange & conservative use of sodium bicarbonate.

7.Hemodynamic support a.Volume expansion 0.9 % NS 10ml/kg over 20-30 min-used in hemorrhage or excessive capillary leak, Packed red blood cells also used. Infants with marked capillary leak-avoid 5% albumin-albumin also leaks from capillaries –worsen intertitial edema.

b.Pharmacologic Rx 1.Cardiotonic agents- Dobutamine 2.Vasopressors-Dopamine, Epinephrine. Milrinone -cardiac function very poor & infant unresponsive to dobutamine . enhances cardiac output & lowers PVR.

Dobutamine -beta1 adrenergic stimulation. Dopamine -alpha & beta adrenergic receptor stimulation. Support of systemic BP & improved cardiac output. High dose 6-20 micro gm/kg/min Moderate dose 3-5 micro gm/kg/min Low 1-2 micro gm/kg/min- enhances mesenteric & renal blood flow. Dopamine may increase PVR-high infusion rates >10micro gm/kg/min.

Epinephrine 0.03-0.10 micro gm/kg/min-stimulates alpha & beta adrenergic receptors. Raises systemic BP tru enhanced cardiac output & peripheral vasoconstriction. Epinephrine infusion caution-alpha adrenergic receptor stimulation results in pulmonary vasoconstriction & elevated PVR & end organ (renal & mesenteric) perfusion reduced.

8.Correction of metabolic abnormalities Biochemical abnorm .-right to left shunting by imparing cardiac function. Correction of hypoglycemia & hypocalcemia –proper myocardial function. 9.Correction of Polycythemia Hyperviscosity assoc. with polycythemia –increases PVR –release of vasoactive substances tru platelet activation.

Partial exchange transfusion -central hematocrit exceeds 65%. 10.Additional pharmacological agents Sildenafil , adenosine, magnesium suphate , calcium channel blockers, inhaled prostacyclin , inhaled ethyl nitrite, inhaled or inravenous tolazoline . Data insufficient to support use of these medications.

11.Treatment contraversies Interinstitutional variations in approach to diagnosis & management of PPHN. Few centres report successful Rx without use of mechanical ventillation , iNO , ECMO.

PPHN results from disruption of normal perinatal fetal to neonatal circulatory transition. Incidence 1-2 per 1000 live births. Sustained elevation of PVR Persistent fetal circulation Contemporary ventilator management,iNO , ECMO have improved survival among infants with PPHN. Summary

Survivors of PPHN are at risk for chronic -pulmonary disease , audiological , neurodevelopmental or cognitive impairments.

1.Kliegman, Stanton, Geme ST, Schor , Behrman. Nelson Textbook of Pediatrics 19 th edition ,2012 :1529-1530. 2.Cloherty PJ, Eichenwald CE, Hansen RA, Stark RA. Manual of Neonatal Care 7 th edition, 2012 : 435-442 3.John FK, James EL, Donald CF. Nadas Text book of Cardiology 2 nd edition 2006 :113-125 4.Myung PK .Pediatric cardiology for Practitioners 2012, 5 th edition:120-124 References
Tags