Pharmaceutical Engineering: Corrosion

18,958 views 57 slides Sep 30, 2020
Slide 1
Slide 1 of 57
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57

About This Presentation

theories, types of corrosion, prevention, ferrous and nonferrous metals, inorganic and organic metals


Slide Content

CORROSION
Parag Jain
Assistant Professor
Chhattrapati Shivaji Institute
of Pharmacy
Durg, Chhattisgarh
Presented by

INTRODUCTION
•Corrosion is a process of reaction
between metallic surface and its
environment.
•It is an oxidation process.
•It causes loss of metal.
•Hence, disintegration of a metal by
its surrounding chemicals through
a chemical reaction on the surface
of the metal is called corrosion

•Example: Formation of rust on
the surface of iron, formation of
green film on the surface of
copper.
•The responsible factors for the
corrosion of a metal the
environmental chemicals,
temperature and the design.
3

DIFFERENT THEORIES OF
CORROSION
There are two theories of corrosion:
•Dry or chemical corrosion theory
•Wet or galvanic or electrochemical
theory
4

DRY CORROSION THEORY
•According to this theory, corrosion
on the surface of a metal is due
to direct reaction of
atmospheric
oxygen, halogens,
gases like
oxides of
sulphur, oxides of nitrogen,
hydrogen sulphide and fumes of
chemicals with metal.
•Depends on chemical affinity of
the metal towards reactive gas.
5

There are main three reasons
of dry corrosion.
(i)Oxidation corrosion (Reaction with
oxygen)
(ii)Corrosion by other gases
(iii)Liquid metal corrosion
6

(i) Oxidation corrosion
(Reaction with oxygen)
•Some of the metals directly react with
oxygen in the absence of moisture.

Alkali and alkaline earth metals react
with oxygen at room temperature and
form corresponding oxides, while some
metals react with oxygen at higher
temperature.
•Metals like Ag, Au and Pt are not oxidized
as they are noble metals.
7

•During oxidation of a metal, metal oxide
is formed as a thin film on the metallic
surface which protects the metal from
further corrosion.
•If diffusion of either oxygen or metal
occur across this layer, further corrosion
is possible.

(ii) Corrosion by other gases
(Cl2, SO2, H2S)
•In dry atmosphere, these gases react
with metal and form corrosion products
which may be protective or non-
protective.
•In petroleum industries at high
temperatures, H2S attacks steel forming
FeS scale which is porous and interferes
with normal operations.

(iii) Liquid - metal corrosion
•In several industries, molten metal
passes through metallic pipes and
causes corrosion due to dissolution or
due to internal penetration.
•For example, liquid metal mercury
dissolves most metals by forming
amalgams, thereby corroding them.
10

WET CORROSION THEORY
•It is a common type of corrosion of metal in
aqueous corrosive environment.
occurs
contact
when the
with a
•This type of corrosion
metal comes in
conducting liquid
•According to this theory, there is the
formation of a galvanic cell on the surface
of metals.
•Some parts of the metal surface act as
anode and rest act as cathode.

•The chemical in the environment acts
as an electrolyte.
•Oxidation of anodic part takes place
and it results in corrosion at anode,
while reduction takes place at
cathode.
•Gain of electron is reduction

Single metal/Two metal
corrosion

Differences between
Dry corrosion
•Corrosion occurs in the
absence of moisture.
•It involves direct attack
of chemicals on the metal
surface.
•The process is slow.
•Corrosion products are
produced at the site of
corrosion.
•The process of corrosion
is uniform.
Wet corrosion
•Corrosion occurs in
presence of conducting
medium.
•It involves formation of
electrochemical
cells.
•It is a rapid process.
•Corrosion occurs at
anode but rust is
deposited at cathode.
•It depends on the size
of the anodic part of
metal.

Factors Influencing Rate of
Corrosion
•The nature
depend on
and extent of corrosion
the metal and the
environment-
(i)Nature of the metal (purity)
(ii)Environment (pH, oxidizing agents)
(iii)Temperature
(iv)Motion (it may cause erosion)
1
5

TYEPS OF CORROSION
There are basically eight types of corrosion
I.Uniform corrosion
II.Pitting corrosion
III.Intergranular (Inter-crystalline) corrosion
IV.Stress corrosion
V.Crevice corrosion
VI.Galvanic corrosion
VII.Erosion
1
6

I. Uniform corrosion
•This type of corrosion results in a
uniform and continuous decrease in
thickness over the entire surface
area of the metal.
•The rate of uniform corrosion can
be easily determined by measuring
the mass loss, or the quantity of
released hydrogen

II. Pitting corrosion
in protective oxidative•When there is break
layer, impurities.
•This localized form of corrosion is characterized
by the formation of irregularly shaped
cavities on the surface of the metal.
•Their diameter and depth depend on several
parameters related to the metal, the medium
and service conditions.
•It is non uniform corrosion, the intensity and
rate of pitting corrosion can not be assessed by
released hydrogen.

•Pitting corrosion can be assessed using
three criteria : the density, i.e. the
number of pits per unit area, the rate of
deepening and the probability of pitting
•It is caused by Chloride containing ion.

III. Intergranular (weld decay)
corrosion
•Boundries in metal alloy
•Boundries contain material which shows
electrode potential more than other.
•Impoverished (depleted on one component) is
anodic with respect to other.
•Steel can be stabilized by titanium

iV. Stress corrosion
•This type of corrosion results from the
combine action of a mechanical stress
(bending, tension) and thermal.
•Unequal rate of cooling for different
parts
•Stress induced by bolts
2
1

V. Crevice corrosion
•Crevice corrosion is a localized corrosion
in recesses :
•overlapping zones for riveting, bolting or
welding, zones under joints and under
various deposits.
•These zones also called crevices
•Metal with more concentration of oxygen
become anode
•This type of corrosion is also known as
deposit attack.

VI. Galvanic corrosion
•When two dissimilar metals with large
difference in electrochemical potential,
are in direct contact in a conducting
liquid
•One of the two may corrode.
•This is called galvanic corrosion.
•The other metal will not corrode; it may
even be protected in this way.
•Protective oxy layer reduce corrosion

VIII. Erosion
•Corrosion because of attrition or abrasion of
fluid on metal.
•Corrosion by erosion occurs in moving media.
•This rate of corrosion is related to the flow
speed of the fluid.
•It leads to local thinning of the metal, which
results in scratches, which are always oriented
in the same direction, of the flow direction.
•Insulation can reduce corrosion

Prevention (Combat) of
corrosion
•Material selection
•Proper fabrication / designing
•Alteration of environment
•Cathodic (metal which is to be
protected is made cathode)
•Anodic protection
•Surface coatings

Material selection
•Electrochemical potential
•Strength
•Thermal expansion coefficient

Designing
•Joints
•Crevices
•Drainage
•Maintenance

Alteration of environment
Reduce
•Temperature
•Moisture
•Turbulence

Cathodic/Anodic Protection

Cathodic protection

This is method of reducing or preventing
corrosion of a metal by making it a
cathode in the electrolytic cell.
•This can be achieved by means of an
externally impressed current or
sacrificial anode.
•An electrolyte is needed to ensure the
passage of current through the part to be
protected.
•This is effective only in soils or aqueous
media where part to be protected is
immersed.
•It is not effective in the atmosphere.

Contd...
(1) Impressed –current method an
external DC power supply is connected to
the metal be protected.
•Impressed emf means current which is
greater than corrosion current is applied.
•The negative terminal of power supply is
connected to the part to be protected and
the positive to an Auxiliary or inert
anode eg: graphite. Steel scrap, Al, Si-Fe
are also can be used. Si-Fe and graphite
are suitable for ground-beds-buried
•Applications: pipe-lines, underground
cables of Al, Pb; storage tanks, heat-
exchangers, steel-gates exposed to sea
water, hulls of ships, highways and bridges.

Contd...
(2) Sacrificial anode this metal which has
more negative electrode potential than the
structure to be protected is connected
electrically to the part or structure to be
protected.
•The structure is protected at the sacrifice of
another metal. Mg alloys, Zn, Al-5% are
widely used. These anodes are replaced as
soon as consumed.
•Applications: under-water parts of ships, ship
hull, underground pipes, steel water tanks,
water heaters, condenser tubes, oil-cargo-
ballest tanks. Galvanized sheet is sacrificial
protection of steel (Zn on steel).

Contd...
•With sacrificial anodes, the protected metal acts
as the cathode, while a more reactive metal is
attached to the protected metal as the anode.
•The redox reactions will occur spontaneously. While
the oxidation reaction takes place at the anode,
consuming
•Thus, protection of the metal will have been
achieved by successfully shifting its corrosion to the
anode.
•The materials used for the anodes are either pure
highly reactive metals like magnesium and zinc

Anodic protection
•Metal to be protected is made anode.
•This cause formation of a protective film (oxide layer) on
metals by current.
•An external current is initially applied on the metal so as to
passivate it.
•Then the current density is reduced to at the value to ensure
that the passive film does not dissolve this is passivating
current.
•Passivating current is minimum protective current for
passivation (at this point there is minimum corrosion)
•In presence of steel titanium become passive.
•A potentiostat is used to maintain the metal at a constant
potential w.r.t a reference electrode.
•The primary advantage is its applicability in extreme corrosive
environments with low current requirements.

MATERIAL HANDLING
SYSTEM

Material handling
•Materials handling is the art and science of
moving, packing and storing of substances
in any form.
•Material handling is the function of moving
the right material to the right place in the
right time, in the right amount, in sequence,
and in the right condition to minimize
production cost.

Importance of material handling
•Function of production control
•Concerned with scheduling of production control
•Material handling adds value to product cost
•Material handling increases effectiveness of in plant
layout by reducing the cost

Objectives of material handling
•To decrease unit materials handling cost
•To reduce manufacturing cycle time
•To provide better control of the flow of materials
•To provide better working conditions
•To provide contribution for better quality by avoiding
damages to products
•To Increase storage capacity
•To provide higher productivity at lower manufacturing
costs

Principles of material handling
•Material should be moved as little as possible
•Reduction in time by using shortest routers and
mechanical material handling equipment
•The material movement should be in lots rather than in
individual units
•Design of material handling equipment should be such
that it can increase the effectiveness
•Re-handling and back tracking of materials should be
avoided
•Periodically Repairing, Maintenance & Checkup of
existing material handling equipments

Types of materials handling equipment
•Conveyers
•Cranes, Elevators and Hoists
•Industrial Trucks
•Auxiliary Equipments

Conveyors
•Gravity or powered devices
•Used for moving loads from one point to point over
fixed paths.

Belt conveyor
•Motor driven belt usually made of metal fabric

Chain conveyor
•Motor driven chain that drags materials along a metal
side base.

Roller conveyor
•Boxes, large parts or unit loads, roll on top of a series
of roller mounted on a rigid frame.
•these are made of metal framework with horizontal
rollers placed at a distance. They use roller gravity.
They use roller gravity concept or sliding concept.

Pneumatic conveyor
•High volume of air flows through a tube carrying
materials along with air flow.

Cranes, elevators, hoists
•These are overhead devices used for moving varying
loads intermittently between points within an area.

Industrial trucks
•May electric, gasoline, diesel,

Auxiliary equipment
•Devices or attachments used with handling equipment
to make their use more effective and versatile

Website: www.probecell.com Email: [email protected]
Ph: 7415211131
Office: Smriti Nagar, Bhilai, Chhattisgarh - 490020
https://youtube.com/c/ParagJainthunderpassionate https://www.facebook.com/thesisresearchwriting
Research article Review article ThesisSynopsisPhD Title Research guidance