Phase diagram type 1 (1) (1).pdf

MarwanEmad12 247 views 23 slides May 17, 2023
Slide 1
Slide 1 of 23
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23

About This Presentation

material phase diagram


Slide Content

Phase diagram my new
lecture

Lecture 4 phase diagram

ISSUES TO ADDRESS...
• When we combine two elements...
what equilibrium state do we get?
• In particular, if we specify...
--a composition (e.g., wt% Cu - wt% Ni), and
--a temperature (T)
then...
How many phases do we get?
What is the composition of each phase?
How much of each phase do we get?
Phase Diagrams
Phase B
Phase A
Nickel atom Copper atom


Components
:
The elements or compounds which are present in the mixture
(e.g., Al and Cu)

Phases
:
The combination of two or more elements in specific form to
consist a certain region of material with distinct physical and
chemical properties.
(e.g., αand β).
Aluminum-
Copper
Alloy
Components and Phases
α (darker
phase)
β(lighter
phase)
Adapted from
chapter-opening
photograph,
Chapter 9,
Callister 3e.

Phase Equilibria: Solubility Limit
– Solutions
–solid solutions, single phase
– Mixtures
–more than one phase

Solubility Limit
:
Max concentration for
which only a single phase
solution occurs.
Question:
What is the
solubility limit at 20°C?
Answer:
65 wt% sugar
.
If C
o
< 65 wt% sugar:
syrup
If C
o
> 65 wt% sugar:
syrup + sugar.
65
Sucrose/Water Phase Diagram
Pure
Sugar
Temperature (°C)
02040 6080 100
C
o
=Composition (wt% sugar)
L
(liquid solution
i.e., syrup)
Solubility
Limit
L
(liquid)
+
S
(solid
sugar)
20
40
60
80
100
Pure
Water
Adapted from Fig. 9.1,
Callister 7e.

Effect of T& Composition (C
o
)
• Changing Tcan change # of phases:
Adapted from
Fig. 9.1,
Callister 7e.
D
(100°C,90)
2 phases
B
(100°C,70)
1 phase
path
A
to
B
.
• Changing C
o
can change # of phases:path
B
to
D
.
A
(20°C,70)
2 phases
70 80 100 60 40 20 0
Temperature (°C)
C
o
=Composition (wt% sugar)
L
(
liquid solution
i.e., syrup)
20
100
40
60
80
0
L
(liquid)
+
S
(solid
sugar)
water-
sugar
system

Definition and types of phase
diagrams
•Phase diagrams;
indicate phases as function of Temp (T) ,
Composition (C0), and Pressure (P).
-
just 2 components in phases diagrams wil be studied in this course.
- independent variables are: Tand Co only while (P= 1 atm is
constant, almost always used).
• Types of phase diagrams • 1-Solid solution type
• 2-Simple eutectic type
• 3-Binary or combination eutectic type

Methods of construction phase
diagrams
• 1-From cooling curve
• 2-By high temperature X-ray diffraction
measurement
• 3-From thermal expansion curves
(Dilatometer).
• 4-By high temperature microscopy.
• 5-From electrical resistivity
measurements

1-solid solution type of Phase diagram
0.1278 1.8 FCC Cu
0.1246 1.9 FCC Ni
r(nm)
electronega
tivity
Crystal
Structure
• Both have the same crystal structure (FCC) and hav e
similar electronegativities and atomic radii (
W. Hume –
Rothery rules
) suggesting high mutual solubility.
Solid solution system: the two elements dissolve in each
other with any percentages
(e.g., Ni-Cu solution)
• Ni and Cu are totally miscible in all proportions.

1
-
solid solution type of Phase diagram
cont.

Phase
Diagram
for Cu-Ni
system
Adapted from Fig. 9.3(a), Callister 7e.
(Fig. 9.3(a) is adapted from Phase
Diagrams of Binary Nickel Alloys, P. Nash
(Ed.), ASM International, Materials Park,
OH (1991).
Present phases:
L
(liquid)
α
(FCC solid solution)
L+α
wt% Ni
20 40 60 80 100 0
1000
1100
1200
1300
1400
1500
1600
T(°C)
L(liquid)
α
(FCC solid
solution)
L
+
α
liquidus
solidus
Cu

Cooling curve of pure metal

Construction of phase diagram from series
of cooling curves

wt% Ni
20 40 60 80 100 0
1000
1100
1200
1300
1400
1500
1600
T(°C)
L(liquid)
α
(FCC solid
solution)
L
+
α
liquidus
solidus
Cu-Ni
phase
diagram
1-solid solution type of Phase diagramcont.
Numberand types of phases •
Rule 1
:
If we know Tand Co, then we know:
--the
nomber
and types of phases present.
• Examples:
A(1100°C, 60):
1 phase: α
B(1250°C, 35):
2 phases: L+ α
Adapted from Fig. 9.3(a), Callister 7e.
(Fig. 9.3(a) is adapted from Phase
Diagrams of Binary Nickel Alloys, P. Nash
(Ed.), ASM International, Materials Park,
OH, 1991).
B(1250°C,35)
A(1100°C,60)

wt% Ni
20
1200
1300
T(°C)
L(liquid)
α
(solid)
L
+
α
liquidus solidus
30 40 50
L
+
α
Cu-Ni
system
1
-
solid solution type of Phase diagram
cont.
composition of phases

Rule 2:
If we know Tand Co, then we know:
--the composition of each phase.
• Examples:
TA
A
35
Co32
CL
At TA= 1320°C:
Only Liquid (L)
CL= Co
( = 35 wt% Ni)
At TB= 1250°C:
Both αand L
CL= Cliquidus
( = 32 wt% Ni here)
Cα= Csolidus
( = 43 wt% Ni here)
At TD= 1190°C:
Only Solid (α)
Cα= Co
( = 35 wt% Ni
)
Co= 35 wt% Ni
Adapted from Fig. 9.3(b), Callister 7e.
(Fig. 9.3(b) is adapted from Phase Diagrams
of Binary Nickel Alloys, P. Nash (Ed.), ASM
International, Materials Park, OH, 1991.)
B
TB
D
TD
tie line
4

3


Rule 3:
If we know Tand Co, then we know:
--the amount of each phase (given in wt%).
• Examples:
At TA: Only Liquid (L)
WL= 100 wt%, Wα= 0
At TD: Only Solid (α)
WL= 0, Wα= 100 wt%
Co= 35 wt% Ni
Adapted from Fig. 9.3(b), Callister 7e.
(Fig. 9.3(b) is adapted from Phase Diagrams of
Binary Nickel Alloys, P. Nash (Ed.), ASM
International, Materials Park, OH, 1991.)
1
-
solid solution type of Phase diagram
cont.
weight fractions of phases
wt% Ni
20
1200
1300
T(°C)
L(liquid)
α
(solid)
L
+
α
liquidus solidus
30 40 50
L
+
α
Cu-Ni
system
TA
A
35
Co32
CL
B
TB
D
TD
tie line
4

3
R
S
At TB: Both αand L
% 73
32 43
35 43
wt =


= = 27 wt%
W
L
=
S
R
+
S
W
α
=
R
R
+
S

•Tie line –connects the phases in equilibrium
with each other -essentially an isotherm
The Lever Rule
How much of each phase?
Think of it as a lever (teeter-totter)
M
L
M
α
R
S
R M S M
L

=

α
wt% Ni
20
1200
1300
T(°C)
L(liquid)
α
(solid)
L
+
α
liquidus solidus
30 40 50
L
+
α
B
TB
tie line
C
o
C
L
C
αααα
S
R

Prove of Lever Rule

Example
• Find the types, composition and weight
fraction of phases present at the points’
A,B,C,D,E shown in the figure, during
cooling in a Cu-Ni Binary

wt% Ni
20
1200
1300
30 40 50
1100L(liquid)
α
(solid)
L
+
α
L
+
α
T(°C)
A
35
Co
L: 35wt%Ni
Cu-Ni
system
•Phase diagram:
Cu-Ni system.
•System is:
--
binary i.e., 2 components:
Cu and Ni.
--
isomorphous i.e., complete
solubility of one
component in
another; αphase
field extends from
0 to 100 wt% Ni.
Adapted from Fig. 9.4,
Callister 7e.
•Consider
Co= 35 wt%Ni
.
Solution
46
35
43
32
α: 43 wt% Ni L: 32 wt% Ni L: 24 wt% Ni α: 36 wt% Ni
B
α: 46 wt% Ni L: 35 wt% Ni
C D E
24
36

•C
α
changes as we solidify.
• Cu-Ni case:
•Fast rate of cooling:
Cored structure
•Slow rate of cooling:
Equilibrium structure
First αto solidify has C
α
= 46 wt% Ni.
Last αto solidify has C
α
= 35 wt% Ni.
Cored vsEquilibrium Phases
First αto solidify:
46 wt% Ni
Uniform Cα:
35 wt% Ni
Lastα to solidify:
< 35 wt% Ni

Mechanical Properties:
Cu
-
Ni
System
• Effect of solid solution strengthening on:
--Tensile strength (TS) --Ductility (%EL,%AR) --Peak as a function of C
o
--Min. as a function of C
o
Adapted from Fig. 9.6(a), Callister 7e.Adapted from Fig. 9.6(b), Callister 7e. Tensile Strength (MPa)
Composition, wt% Ni
CuNi
0 20 40 60 80 100
200
300
400
TSfor
pure Ni
TSfor pure Cu
Elongation (%EL)
Composition, wt% Ni
CuNi
0 20 40 60 80 100
20
30
40
50
60
%ELfor
pure Ni
%ELfor pure Cu
Tags