phase_plane_analysis for analyzing non linear system.pdf

ronald551060 39 views 83 slides Jul 08, 2024
Slide 1
Slide 1 of 83
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83

About This Presentation

Analysis of non-linear systems


Slide Content

Stability and Phase Plane
Analysis
Advanced Control (Mehdi Keshmiri, Winter 95)
1

Advanced Control (Mehdi Keshmiri, Winter 95)
Objectives
Objectives of the section:
Introducing the Phase Plane Analysis
Introducing the Concept of stability
Stability Analysis of Linear Time Invariant Systems
LyapunovIndirect Method in Stability Analysis of
Nonlinear Systems
2

Advanced Control (Mehdi Keshmiri, Winter 95)
Introducing
the Phase Plane Analysis
3

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Phase Space form of a Dynamical System:
�
1=�
1�
1,�
2,…,�
�,�
1,�
2,…,�
�,�
�
2=�
2(�
1,�
2,…,�
�,�
1,�
2,…,�
�,�)

�
�=�
��
1,�
2,…,�
�,�
1,�
2,…,�
�,�
�=??????�,??????,�
�∈ℝ
�
??????∈ℝ
�
�=??????�,??????,�
?????? ??????
�=??????�,??????
?????? ??????
Time-Varying System Time-Invariant System
4

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Phase Space form of a Linear Time Invariant (LTI) System:
??????=�??????+�??????
�∈ℝ
�
??????∈ℝ
�
Multiple isolated equilibria
Limit Cycle
Finite escape time
Harmonic, sub-harmonic and almost periodic Oscillation
Chaos
Multiple modes of behavior
Special Properties of Nonlinear Systems:
5

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Phase Plane Analysisis a graphical method for studying
second-order systemsrespect to initial conditions by:
providing motion trajectories corresponding to various initial
conditions.
examining the qualitative features of the trajectories
obtaining information regarding the stability of the equilibrium
points

�
1=�
1(�
1,�
2)
�
2=�
2(�
1,�
2)
6

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Advantages of Phase Plane Analysis:
It is graphical analysis and the solution trajectories can be
represented by curves in a plane
Provides easy visualization of the system qualitative
Without solving the nonlinear equations analytically, one can study
the behavior of the nonlinear system from various initial
conditions.
It is not restricted to small or smooth nonlinearities and applies
equally well to strong and hard nonlinearities.
There are lots of practical systems which can be approximated by
second-order systems, and apply phase plane analysis.
7

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Disadvantage of Phase Plane Method:
It is restricted to at most second-order
graphical study of higher-order is computationally and
geometrically complex.
8

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Example: First Order LTI System
??????=??????????????????(??????)
��
sin(�)
=��
Analytical Solution

??????
0
??????
��
sin(�)
=
0
??????
��
��
��
=sin(�)
�=ln
cos�
0+cot(�
0)
cos�+cot(�)
Graphical Solution-6 -4 -2 0 2 4 6
-1
-0.5
0
0.5
1
x
sin(x)
9

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Concept of Phase Plane Analysis:
Phase plane method is applied to Autonomous Second Order System
System response ��=(�
1�,�
2(�))to initial condition �
0=�
10,�
20
is a mapping from ℝ(Time) to ℝ
2
(�
1,�
2)
The solution can be plotted in the �
1−�
2plane called State Plane or
Phase Plane
The locus in the �
1−�
2plane is a curved named Trajectorythat pass through
point �
0
The family of the phase plane trajectories corresponding to various initial
conditions is called Phase portrait of the system.
For a single DOF mechanical system, the phase plane is in fact is (�, �)plane
�
1=�
1(�
1,�
2) �
2=�
2(�
1,�
2)
10

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Example: Van der Pol Oscillator Phase Portraitx     
11

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Plotting Phase Plane Diagram:
Analytical Method
Numerical Solution Method
Isocline Method
Vector Field Diagram Method
Delta Method
Lienard’sMethod
Pell’s Method
12

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Analytical Method
Dynamic equations of the system is solved, then time parameter is omitted
to obtain relation between two states for various initial conditions

�
1=�
1(�
1,�
2)
�
2=�
2(�
1,�
2)
Solve�
1�,�
0=�
1(�,�
0)
�
2�,�
0=�
2(�,�
0)
??????�
1,�
2=0
For linear or partially linear systems
13

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Example: Mass Spring System
� �+��=0
For �=�=1: �+�=0
��=�
0cos(�)+ �
0sin(�)
��=−�
0sin�+ �
0cos(�)
�
2
+ �
2
=�
0
2
+ �
0
2x
y
x
2
+ y
2
- 4
-2 -1 0 1 2
-2
-1
0
1
2
14

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Analytical Method
Time differential is omitted from dynamic equations of the system, then
partial differential equation is solved

�
1=�
1(�
1,�
2)
�
2=�
2(�
1,�
2)
Solve
??????�
1,�
2=0
��
2
��
1
=
�
2(�
1,�
2)
�
1(�
1,�
2)
For linear or partially linear systems
15

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Example: Mass Spring System
� �+��=0
For �=�=1: �+�=0x
y
x
2
+ y
2
- 4
-2 -1 0 1 2
-2
-1
0
1
2
�
1=�
2
�
2=−�
1
��
2
��
1
=
−�
1
�
2

??????
20
??????
2
�
2��
2=
??????
10
??????
1
−�
1��
1
�
2
+ �
2
=�
0
2
+ �
0
2
16

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Numerical Solution Method
Dynamicequationsofthesystemissolvednumerically(e.g.Ode45)for
variousinitialconditionsandtimeresponseisobtained,thentwostatesare
plottedineachtime.
Example: Pendulum ??????+sin??????=00 2 4 6 8 10
-1
-0.5
0
0.5
1
Time(sec)
x
2
(t) -1 -0.5 0 0.5 1
-1
-0.5
0
0.5
1
x
1
x
2 0 2 4 6 8 10
-1
-0.5
0
0.5
1
Time(sec)
x
1
(t)
17

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Isocline Method
Isocline: The set of all points which have same trajectory slope
First various isoclines are plotted, then trajectories are drawn.

�
1=�
1(�
1,�
2)
�
2=�
2(�
1,�
2)
��
2
��
1
=
�
2(�
1,�
2)
�
1(�
1,�
2)
=��
2�
1,�
2=��
1(�
1,�
2)
18

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Example: Mass Spring System
� �+��=0
For �=�=1: �+�=0
�
1=�
2
�
2=−�
1
��
2
��
1
=
−�
1
�
2
=�
�
1+��
2=0x
y
x
2
+ y
2
- 4
-5 0 5
-5
0
5
Slope=1
Slope=infinite
Slope=-1
19

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Vector Field Diagram Method
Vector Field: A set of vectors that is tangent to the trajectory
At each point (�
1,�
2)vector
�
1(�
1,�
2)
�
2(�
1,�
2)
is tangent to the trajectories
Hence vector field can be constructed in the phase plane and direction of
the trajectories can be easily realized with that 1 2
12
sin()0
sin()
x x
xx




 
 
 
f
20

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
Singularpointisanimportantconceptwhichrevealsgreatinfoabout
propertiesofsystemsuchasstability.
Singularpointsareonlypointswhichseveraltrajectoriespass/approach
them(i.e.trajectoriesintersect).
Singular Points in the Phase Plane Diagram:
Equilibrium points are in fact singular points in the phase plane
diagram
21
�
1�
1,�
2=0
�
1�
1,�
2=0
Slope of the trajectories at
equilibrium points
��
2
��
1
=
0
0

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
22
Example: Using Matlabx ' = y
y ' = - 0.6 y - 3 x + x
2






-6 -4 -2 0 2 4 6
-10
-5
0
5
10
x
y
�+0.6 �+3�+�
2
=0

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
23
Example: Using Maple Code
with(DEtools):
xx:=x(t): yy:=y(t):
dx:=diff(xx,t): dy:=diff(yy,t):
e0:=diff(dx,t)+.6*dx+3*xx+xx^2:
e1:=dx-yy=0:
e2:=dy+0.6*yy+3*xx+xx^2=0:
eqn:=[e1,e2]: depvar:=[x,y]:
rang:=t=-1..5: stpsz:=stepsize=0.005:
IC1:=[x(0)=0,y(0)=1]:
IC2:=[x(0)=0,y(0)=5]:
IC3:=[x(0)=0,y(0)=7]:
IC4:=[x(0)=0,y(0)=7]:
IC5:=[x(0)=-3.01,y(0)=0]:
IC6:=[x(0)=-4,y(0)=2]:
IC7:=[x(0)=1,y(0)=0]:
IC8:=[x(0)=4,y(0)=0]:
IC9:=[x(0)=-6,y(0)=3]:
IC10:=[x(0)=-6,y(0)=6]:
ICs:=[IC||(1..10)]:
lincl:=linecolour=sin((1/2)*t*Pi):
mtd:=method=classical[foreuler]:
phaseportrait(eqn,depvar,rang,ICs,stpsz,lincl,mtd);
�+0.6 �+3�+�
2
=0

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
24
Example: Using Maple Tools
�+0.6 �+3�+�
2
=0

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis
25
Phase Plane Analysis for Single DOF Mechanical System
In the case of single DOF mechanical system
�+��, �=0
�
1=�
�
2= �
�
1=�
2
�
2=−�(�
1,�
2)
Thephaseplaneisinfact(�− �)planeandeverypointshowsthe
positionandvelocityofthesystem.
Trajectoriesarealwaysclockwise.Thisisnottrueinthegeneralphase
plane(�
1−�
2)

Advanced Control (Mehdi Keshmiri, Winter 95)
26
Introducing
the Concept of Stability

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
27
Stabilityanalysisofadynamicsystemisnormallyintroducedinthestate
spaceformoftheequations.
�=??????�,??????,�
�∈ℝ
�
??????∈ℝ
�
Mostoftheconceptsinthischapterareintroducedforautonomous
systemsu x x = f(x,u)
Autonomous Dynamic Systemu x ,tx = f(x,u )
Dynamic System

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
28
Ourmainconcernisthefirsttypeanalysis.Somepreliminaryissuesofthe
secondtypeanalysiswillbealsodiscussed.
Stability analysis of a dynamic system is divided in three
categories:
1.Stabilityanalysisoftheequilibriumpointsofthesystems.Westudythe
behavior(dynamics)ofthefree(unforced,�=0)systemwhenitisperturbed
fromitsequilibriumpoint.
2.Input-outputstabilityanalysis.Westudythesystem(forcedsystem�≠0)
outputbehaviorinresponsetoboundedinputs.
3. Stability analysis of periodic orbits. This analysis is for those systems which
perform a periodic or cyclic motion like walking of a biped or orbital motion
of a space object.

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
29
Reminder:
�
??????issaidanequilibriumpointofthesystemifoncethesystemreachesthis
positionitstaysthereforever,i.e.��
??????=0
Definition (LyapunovStability):
Theequilibriumpoint�
??????issaidtobestable(inthesenseofLyapunov
stability)ormotionofthesystemaboutitsequilibriumpointissaidtobe
stableifthesystemstates(�)isperturbedawayfrom�
??????thenitstayscloseto
�
??????.Mathematically�
??????isstableif0)(,0   (0) ( ) 0
ee
tt      x x x x

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
30
Withoutlossofgeneralitywecanpresentouranalysisaboutequilibrium
point�
??????=0,sincethesystemequationcanbetransferredtoanewform
withzeroastheequilibriumpointofthesystem.
�=�−�
??????
�=??????�
�
??????≠0
�=??????�
�
??????≠0
Theequilibriumpoint�
??????issaidtobestable(inthesenseofLyapunov
stability)ormotionofthesystemaboutitsequilibriumpointissaidtobestable
ifforany??????>0,thereexists0<&#3627408479;<??????suchthat
A more precise definition: (0) ( ) 0
ee
r t R t      x x x x

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
31
The equilibrium point &#3627408459;
??????=0is said to be
Definition (LyapunovStability):
Stableif
∀??????>0∃0<&#3627408479;<??????&#3627408480;.&#3627408481;.
&#3627408459;0<&#3627408479; &#3627408459;&#3627408481;<??????∀&#3627408481;>0
Unstableif it is not stable.
Asymptotically stable if it is stable and
∀&#3627408479;>0&#3627408480;.&#3627408481;.
&#3627408459;0<&#3627408479; lim
??????→∞
&#3627408459;(&#3627408481;)=0
Marginallystableifitisstableandnot
asymptoticallystable
Exponentiallystableifitisasymptoticallystablewithanexponentialrate
&#3627408459;(0)<&#3627408479; &#3627408459;(&#3627408481;)<&#3627409148;&#3627408466;
−&#3627409149;??????
&#3627408459;(0)&#3627409148;,&#3627409149;>0

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
32
Example: UndampedPendulum
??????+
&#3627408468;
&#3627408473;
sin(??????)=0 ??????
??????1=0,??????
??????2=??????   R
B r
B
??????
??????1is a marginally stablepoint and ??????
??????2is an unstablepoint0 2 4 6 8 10
-1.5
-1
-0.5
0
0.5
1
1.5
Time(sec)
Teta (rad)
X(0) = (0,1) 0 2 4 6 8 10
0
10
20
30
40
Time(sec)
Teta (rad)
X(0) = (0,4)

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
33
Example: damped Pendulum
??????+&#3627408438; ??????+
&#3627408468;
&#3627408473;
sin(??????)=0 ??????
??????1=0,??????
??????2=??????
??????
??????1is an exponentially stablepoint and ??????
??????2is an unstablepoint0 5 10 15
-2.5
-2
-1.5
-1
-0.5
0
0.5
Time(sec)
Teta (rad)
X(0) = (-2.5,0) 0 5 10 15
-7
-6
-5
-4
-3
Time (sec)
Teta (rad)
X(0) = (-3.5,0) 0 5 10 15
-4
-2
0
2
4
6
8
Time(sec)
Teta (rad)
X(0) = (-3,10)

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
34stateform
122
122
2 1 1 2
(1 ) 0 0
(1 )
ee
xx
x x x x x x
x x x x

       
   


Example: Van Der Pol Oscillator
&#3627408485;
??????=0is an unstablepoint

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
35
Definition:
iftheequil.point&#3627408459;
??????isasymptoticallystable,thenthesetofall
pointsthattrajectoriesinitiatedatthesepointeventuallyconverge
totheoriginiscalleddomainofattraction.
Definition:
iftheequil.point&#3627408459;
??????isasymptotically/exponentiallystable,then
theequil.pointiscalledgloballystableifthewholespaceis
domainofattraction.Otherwiseitiscalledlocallystable.

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
36
The origin in the first order system of &#3627408485;=−&#3627408485;is globally exponentially stable.
Example 1:00
( ) lim ( ) 0 0
t
t
x x x t x e x t x


       
Theorigininthefirstordersystem &#3627408485;=−&#3627408485;
3
isgloballyasymptoticallybut
notexponentiallystable.
Example 2:3 0
0
2
0
( ) lim ( ) 0
12
t
x
x x x t x t x
tx

      

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
37
The origin in the first order system &#3627408485;=−&#3627408485;
2
is semi-asymptotically but not
exponentially stable.
Example 3:0
0
2 0
00
1/
lim ( ) 0 if 0
()
lim ( ) if 01
t
tx
x t x
x
x x x t
x t xtx




     
  


Domain of attraction is &#3627408485;
0>0.

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
38
Example 4:
&#3627408485;+ &#3627408485;+&#3627408485;=0

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
39
Example 5:
&#3627408485;+0.6 &#3627408485;+3&#3627408485;+&#3627408485;
2
=0

Advanced Control (Mehdi Keshmiri, Winter 95)
Stability, Definitions and Examples
40
Example 6:
&#3627408485;+ &#3627408485;+&#3627408485;
3
−&#3627408485;=0

Advanced Control (Mehdi Keshmiri, Winter 95)
41
Stability Analysis of
Linear Time Invariant Systems

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
42
Itisthebesttoolforstudyofthelinearsystemgraphically
Thisanalysisgivesaverygoodinsightoflinearsystems
behavior
Theanalysiscanbeextendedforhigherorderlinearsystem
Localbehaviorofthenonlinearsystemscanbeunderstoodfrom
thisanalysis
Theanalysisisperformedbasedonthesystemeigenvaluesand
eigenvectors.

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
43
Considerasecondorderlinearsystem:
IftheAmatrixisnonsingular,originistheonlyequilibrium
pointofthesystem
IftheAmatrixissingularthenthesystemhasinfinitenumber
ofequilibriumpoints.Infactallofthepointsbelongingtothe
nullspaceofAaretheequilibriumpointofthesystem.isnon-singular
e
A x 0  
**
issingular | ( )
e
Null  A x x x A
&#3627408485;=&#3627408436;&#3627408485;&#3627408436;∈ℝ
2×2
,&#3627408485;∈ℝ
2

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
44
Considerasecondorderlinearsystem:
&#3627408485;=&#3627408436;&#3627408485;
&#3627408436;∈ℝ
2×2
,&#3627408485;∈ℝ
2
The analytical solution can be obtained based on eigenvalues (??????
1,??????
2):
If ??????
1,??????
2are realand distinct
If ??????
1,??????
2are realand similar
If ??????
1,??????
2are complex conjugate
&#3627408485;&#3627408481;=&#3627408436;&#3627408466;
??????1??????
+&#3627408437;&#3627408466;
??????2??????
&#3627408485;&#3627408481;=(&#3627408436;+&#3627408437;&#3627408481;)&#3627408466;
????????????
&#3627408485;&#3627408481;=&#3627408436;&#3627408466;
??????
1??????
+&#3627408437;&#3627408466;
??????
2??????
=&#3627408466;
&#3627409148;??????
(&#3627408436;sin&#3627409149;&#3627408481;+&#3627408437;cos(&#3627409149;&#3627408481;))

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
45
Jordan Form (almost diagonal form)
Thisrepresentationhasthesystemeigenvaluesontheleadingdiagonal,and
either0or1onthesuperdiagonal.
&#3627408485;=&#3627408436;&#3627408485; &#3627408486;=&#3627408445;&#3627408486;
&#3627408445;=
&#3627408445;
1

&#3627408445;
&#3627408475;
&#3627408445;
??????=
??????
??????1
⋱1
??????
??????
Obtaining Jordan form:
&#3627408486;=??????
−1
&#3627408485;
??????=&#3627408483;
1…&#3627408483;
&#3627408475;
&#3627408445;=??????
−1
&#3627408436;??????

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
46
TheAmatrixhas2eigenvalues(eithertworeal,ortwocomplex
conjugates)andcanhaveeithertwoeigenvectorsorone
eigenvectors.Fourcategoriescanberealized
1.Twodistinctrealeigenvaluesandtworealeigenvectors
2.Twocomplexconjugateeigenvaluesandtwocomplex
eigenvectors
3.Twosimilar(real)eigenvaluesandtwoeigenvectors
4.Twosimilar(real)eigenvaluesandoneeigenvectors
A is non-singular:

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
47
1.Two distinct real eigenvalues and two real eigenvectors
&#3627408486;=&#3627408445;&#3627408486;&#3627408445;=
??????
10
0??????
2
&#3627408486;
1=??????
1&#3627408486;
1
&#3627408486;
2=??????
2&#3627408486;
2
&#3627408486;
1=&#3627408486;
10&#3627408466;
??????
1??????
&#3627408486;
2=&#3627408486;
20&#3627408466;
??????
2??????
ln
&#3627408486;
1
&#3627408486;
10
=??????
1&#3627408481;
ln
&#3627408486;
2
&#3627408486;
20
=??????
2&#3627408481;
??????
2
??????
1
ln
&#3627408486;
1
&#3627408486;
10
=ln
&#3627408486;
2
&#3627408486;
20
&#3627408486;
1
&#3627408486;
10
??????
2
??????1
=
&#3627408486;
2
&#3627408486;
20
&#3627408486;
2=
&#3627408486;
20
&#3627408486;
10
??????2/??????1
&#3627408486;
1
??????
2/??????
1
&#3627408486;
2=&#3627408446;&#3627408486;
1
??????
2/??????
1

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
48
1. A ) ??????
&#3627409360;<??????
&#3627409359;<&#3627409358;&#3627408486;
2=&#3627408446;&#3627408486;
1
??????2/??????1
Systemhastwoeigenvectors&#3627408483;
1,&#3627408483;
2thephaseplaneportraitisasthe
following
Trajectories are:
tangent to the slow eigenvector (&#3627408483;
1)for near the origin
parallel to the fast eigenvector (&#3627408483;
2)for far from the origin
The equilibrium point &#3627408459;
??????=0is called stable nodex ' = - 2 x
y ' = - 12 y






-10 -8 -6 -4 -2 0 2 4 6 8 10
-10
-8
-6
-4
-2
0
2
4
6
8
10
x
y x ' = y
y ' = - 2 x - 3 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
49
Example 7: &#3627408485;+4 &#3627408485;+2&#3627408485;=0
&#3627408459;=
01
−2−4
&#3627408459;
det??????&#3627408444;−
01
−2−4
=??????
2
+4??????+2=0 ??????
1=−0.59,??????
2=−3.41
−0.59 −1
2 −0.59+4
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
1=
0.86
−0.51
−3.41 −1
2 −3.41+4
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
2=
−0.28
0.96





-4 -2 0 2 4
-4
-2
0
2
4
x
y 0 2 4 6 8 10
-1
-0.5
0
0.5
1
1.5


X(0) = [-1,10]
X(0) = [-1,1]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
50
1. B ) ??????
&#3627409360;>??????
&#3627409359;>&#3627409358;&#3627408486;
2=&#3627408446;&#3627408486;
1
??????2/??????1
Systemhastwoeigenvectors&#3627408483;
1and&#3627408483;
2thephaseplaneportraitis
oppositeasthepreviousone
Trajectories are:
tangent to the slow eigenvector &#3627408483;
1for near origin
parallel to the fast eigenvector &#3627408483;
2for far from origin
The equilibrium point &#3627408459;
??????=0is called unstable nodex ' = - 2 x
y ' = - 12 y






-10 -8 -6 -4 -2 0 2 4 6 8 10
-10
-8
-6
-4
-2
0
2
4
6
8
10
x
y x ' = y
y ' = - 2 x - 3 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
51
Example 8: &#3627408485;−3 &#3627408485;+2&#3627408485;=0
&#3627408459;=
01
−23
&#3627408459;
det??????&#3627408444;−
01
−23
=??????
2
−3??????+2=0 ??????
1=1,??????
2=2
1−1
21−3
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
1=
−0.71
−0.71
2−1
22−3
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
2=
−0.45
−0.89





-4 -2 0 2 4
-4
-2
0
2
4
x
y 0 0.2 0.4 0.6 0.8 1
-4
-2
0
2
4
6


X(0) = [-2,2]
X(0) = [-2,0.1]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
52
1. C ) ??????
&#3627409360;<&#3627409358;<??????
&#3627409359;
&#3627408486;
2=&#3627408446;&#3627408486;
1
??????2/??????1
Systemhastwoeigenvectors&#3627408483;
1and&#3627408483;
2,thephaseplaneportraitisasthe
following
Only trajectories along &#3627408483;
2are stable trajectories
All other trajectories at start are tangent to &#3627408483;
2and at the end are tangent
to &#3627408483;
1
This equilibrium point is unstable and is called saddle pointx ' = 3 x
y ' = - 3 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y x ' = y
y ' = y + 2 x






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
53
Example 9: &#3627408485;− &#3627408485;−2&#3627408485;=0
&#3627408459;=
01
21
&#3627408459;
det??????&#3627408444;−
01
21
=??????
2
−??????−2=0 ??????
1=−1,??????
2=2
−1−1
−2−1−1
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
1=
−0.71
0.71
2−1
−22−1
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
2=
−0.45
−0.89





-4 -2 0 2 4
-4
-2
0
2
4
x
y 0 2 4 6 8 10
-1
0
1
2
3
x 10
8


X(0) = [1,0.5]
X(0) = [1,-1.5]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
54
2. Two complex conjugate eigenvalues and two complex eigenvectors
&#3627408486;=&#3627408445;&#3627408486;&#3627408445;=
&#3627409148;−&#3627409149;
&#3627409149;&#3627409148;
&#3627408479;≡&#3627408486;
1
2
+&#3627408486;
2
2
??????≡tan
−1
(
&#3627408486;
2
&#3627408486;
1
)
&#3627408479; &#3627408479;=&#3627408486;
1 &#3627408486;
1+&#3627408486;
2 &#3627408486;
2=&#3627408486;
1&#3627409148;&#3627408486;
1−&#3627409149;&#3627408486;
2+&#3627408486;
2&#3627409149;&#3627408486;
1+&#3627409148;&#3627408486;
2=&#3627409148;&#3627408479;
2
??????1+tan??????
2
=
&#3627408486;
1 &#3627408486;
2−&#3627408486;
2 &#3627408486;
1
&#3627408486;
1
2
=
&#3627408486;
1&#3627409149;&#3627408486;
1+&#3627409148;&#3627408486;
2−&#3627408486;
2&#3627409148;&#3627408486;
1−&#3627409149;&#3627408486;
2
&#3627408486;
1
2
=&#3627409149;1+tan??????
2
&#3627408479;=&#3627409148;&#3627408479;
??????=&#3627409149;
&#3627408479;&#3627408481;=&#3627408479;
0&#3627408466;
&#3627409148;??????
??????&#3627408481;=??????
0+&#3627409149;&#3627408481;

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
55
2. A ) ??????
&#3627409360;,??????
&#3627409359;=&#3627409206;±&#3627409207;??????, &#3627409206;<&#3627409358;,&#3627409207;≠&#3627409358;
System has no real eigenvectors the phase plane portrait is as the following
The trajectories are spiral around the origin and toward the origin.
This equilibrium point is called stable focus.
&#3627408479;&#3627408481;=&#3627408479;
0&#3627408466;
&#3627409148;??????
??????&#3627408481;=??????
0+&#3627409149;&#3627408481;x ' = - 2 x - 3 y
y ' = 3 x - 2 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y x ' = y
y ' = - x - y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
56
Example 10: &#3627408485;+ &#3627408485;+&#3627408485;=0
&#3627408459;=
01
−1−1
&#3627408459;
det??????&#3627408444;−
01
−1−1
=??????
2
+??????+1=0 ??????
1,??????
2=−0.5±0.866??????x ' = y
y ' = - x - y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y 0 2 4 6 8 10
-1
-0.5
0
0.5
1
1.5
2


x(0) = [1,-2]
X(0) = [1,2]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
57
2. B ) ??????
&#3627409360;,??????
&#3627409359;=&#3627409206;±&#3627409207;??????, &#3627409206;>&#3627409358;,&#3627409207;≠&#3627409358;
System has no real eigenvectors the phase plane portrait is as the following
The trajectories are spiral around the origin and diverge from the origin.
This equilibrium point is called unstable focus.
&#3627408479;&#3627408481;=&#3627408479;
0&#3627408466;
&#3627409148;??????
??????&#3627408481;=??????
0+&#3627409149;&#3627408481;x ' = - 2 x - 3 y
y ' = 3 x - 2 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y x ' = y
y ' = - x - y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
58
Example 11: &#3627408485;− &#3627408485;+&#3627408485;=0
&#3627408459;=
01
−11
&#3627408459;
det??????&#3627408444;−
01
−11
=??????
2
−??????+1=0 ??????
1,??????
2=0.5±0.866??????x ' = y
y ' = - x + y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y 0 2 4 6 8 10
-600
-400
-200
0
200


X(0) = [1,2]
X(0) = [1,-2]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
59
2. C ) ??????
&#3627409360;,??????
&#3627409359;=±&#3627409207;??????, &#3627409206;=&#3627409358;,&#3627409207;≠&#3627409358;
System has two imaginary eigenvalues and no real eigenvectors the phase
plane portrait is as the following
The trajectories are closed trajectories around the origin.
This equilibrium point is marginally stable and is called center.
&#3627408479;&#3627408481;=&#3627408479;
0&#3627408466;
&#3627409148;??????
??????&#3627408481;=??????
0+&#3627409149;&#3627408481;x ' = 3 y
y ' = - 3 x






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y x ' = y
y ' = - 5 x






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
60
Example 12: &#3627408485;+3&#3627408485;=0
&#3627408459;=
01
−30
&#3627408459;
det??????&#3627408444;−
01
−30
=??????
2
+3=0 ??????
1,??????
2=±1.732??????x ' = y
y ' = - 3 x






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y 0 2 4 6 8 10
-2
-1
0
1
2


X(0) = [1,-2]
X(0) = [1,2]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
61
3. Two similar (real) eigenvalues and two eigenvectors
&#3627408486;=&#3627408445;&#3627408486;&#3627408445;=
??????0
0??????
&#3627408486;
1=??????&#3627408486;
1
&#3627408486;
2=??????&#3627408486;
2
&#3627408486;
1=&#3627408486;
10&#3627408466;
????????????
&#3627408486;
2=&#3627408486;
20&#3627408466;
????????????
&#3627408486;
1
&#3627408486;
2
=
&#3627408486;
10
&#3627408486;
20
&#3627408486;
2=&#3627408446;&#3627408486;
1

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
62x ' = 2 x
y ' = 2 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y
??????>0x ' = - 2 x
y ' = - 2 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y
??????<0
3 ) ??????
&#3627409360;=??????
&#3627409359;=??????≠&#3627409358;
System has two similar eigenvalues and two different eigenvectors. The
phase plane portrait is as the following, depending to the sign of ??????
The trajectories are all along the initial conditions and they are ??????<0
toward ??????>0or outward the origin

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
63
4. Two similar (real) eigenvalues and One eigenvectors
&#3627408486;=&#3627408445;&#3627408486;&#3627408445;=
??????1
0??????
&#3627408486;
1=??????&#3627408486;
1+&#3627408486;
2
&#3627408486;
2=??????&#3627408486;
2
&#3627408486;
1=&#3627408486;
10&#3627408466;
????????????
+&#3627408486;
20&#3627408481;&#3627408466;
????????????
&#3627408486;
2=&#3627408486;
20&#3627408466;
????????????
&#3627408486;
1=&#3627408486;
10
&#3627408486;
2
&#3627408486;
20
+&#3627408486;
2
1
??????
ln(
&#3627408486;
2
&#3627408486;
20
)
&#3627408486;
1=&#3627408486;
2(
&#3627408486;
10
&#3627408486;
20
+
1
??????
ln
&#3627408486;
2
&#3627408486;
20
)

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
64
??????>0
??????<0
4 ) ??????
&#3627409360;=??????
&#3627409359;=??????≠&#3627409358;
System has two similar eigenvalues and only one eigenvector. The phase
plane portrait is as the following, depending to the sign of ??????
The trajectories converge to zero or diverge to infinity along the system
eigenvector. x ' = 0.5 x + y
y ' = 0.5 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y x ' = - 0.5 x + y
y ' = - 0.5 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
65
Example 13: &#3627408485;+2 &#3627408485;+&#3627408485;=0
&#3627408459;=
01
−1−2
&#3627408459;
det??????&#3627408444;−
01
−1−2
=??????
2
+2??????+1=0 ??????
1,??????
2=−1
−1−1
1−1+2
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
1=
−0.71
0.71





-4 -2 0 2 4
-4
-2
0
2
4
x
y 0 2 4 6 8 10
-1
0
1
2
3


X(0) = [2,3]
X(0) = [2,-4]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
66
A is singular (&#3627408517;&#3627408518;??????&#3627408488;=&#3627409358;):
Systemhasatleastoneeigenvalueequaltozeroandthereforeinfinite
numberofequilibriumpoints.Threedifferentcategoriescanbe
specified
??????
1=0, ??????
2≠0
??????
1,??????
1=0, ??????&#3627408462;&#3627408475;&#3627408472;&#3627408436;=1
??????
1,??????
1=0, ??????&#3627408462;&#3627408475;&#3627408472;&#3627408436;=0

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
67
1) ??????
1=0, ??????
2≠0 &#3627408486;=&#3627408445;&#3627408486;
&#3627408486;
1=0
&#3627408486;
2=??????&#3627408486;
2
&#3627408486;
1=&#3627408486;
10
&#3627408486;
2=&#3627408486;
20&#3627408466;
????????????
&#3627408445;=
00
0??????
System has infinite number of non-isolated equilibrium points along a line
System has two eigenvectors. Eigenvector corresponding to zero eigenvalue
is in fact loci of the equilibrium points
Depending on the sign of the second eigenvalue, all the trajectories move
inward or outward to &#3627408483;
1along &#3627408483;
2x ' = 0
y ' = 2 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y x ' = - x + y
y ' = - 3 x + 3 y






-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4
x
y

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
68
Example 14: &#3627408485;+ &#3627408485;=0
&#3627408459;=
01
0−1
&#3627408459;
det??????&#3627408444;−
01
0−1
=??????
2
+??????=0 ??????
1=0,??????
2=−1
0−1
01
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
1=
1
0
−1−1
0−1+1
&#3627408483;
1
1
&#3627408483;
1
2
=0
&#3627408483;
1=
1
−1





-4 -2 0 2 4
-4
-2
0
2
4
x
y 0 2 4 6 8 10
-2
-1
0
1
2
3


X(0) = [2,-4]
X(0) = [3,-4]

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
69
2) ??????
1,??????
1=0, ??????&#3627408462;&#3627408475;&#3627408472;&#3627408436;=1 &#3627408486;=&#3627408445;&#3627408486;
&#3627408486;
1=&#3627408486;
2
&#3627408486;
2=0
&#3627408486;
1=&#3627408486;
20&#3627408481;+&#3627408486;
10
&#3627408486;
2=&#3627408486;
20
&#3627408445;=
01
00
Systemhasinfinitenumberofnon-isolatedequilibriumpointsalongaline
Systemhasonlyoneeigenvector,anditislocioftheequilibriumpoints
Allthetrajectoriesmovetowardinfinityalongthesystemeigenvector
(unstablesystem).

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
70
2) ??????
1,??????
1=0, ??????&#3627408462;&#3627408475;&#3627408472;&#3627408436;=0
&#3627408486;=&#3627408445;&#3627408486;
&#3627408486;
1=0
&#3627408486;
2=0
&#3627408486;
1=&#3627408486;
10
&#3627408486;
2=&#3627408486;
20
&#3627408445;=
00
00
Systemisastaticsystem.Allthepointsareequilibriumpoints

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
71
Summary
Six different type of isolated equilibrium points can be identified
Stable/unstable node
Saddle point
Stable/ unstable focus
Center

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
72
Stability Analysis of Higher Order Systems:
Analysis and results for the second order LTI system can be
extended to higher order LTI system
Graphical tool is not useful for higher order LTI system except
for third order systems.
This means stability analysis of mechanical system with more
than one DOF can not be materialized graphically
Stability analysis is performed through the eigenvalue analysis of
the Amatrix.

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
73
Consideralineartimeinvariant(LTI)system
OriginistheonlyequilibriumpointofthesystemifAisnon-
singular
Otherwisethesystemhasinfinitenumberofequilibriumpoints,
allthepointsonnull-spaceofAareinfactequil.pointsofthe
system.

x=AxBu
yCxDu det( ) 0
e


A
x = Ax x 0  
det( ) 0
**
| Nullspace( )
e


A
x = Ax x x x A

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
74
Details for Case of Non-Singular A
Origin is the only equilibrium point of the system
This equilibrium point (system) is
Exponentially stableif all eigenvalues of Aare either real
negative or complex with negative real part.
Marginally stable if eigenvalues of Ahave non-positive real
part and &#3627408479;&#3627408462;&#3627408475;&#3627408472;&#3627408436;−??????&#3627408444;=&#3627408475;−&#3627408479;for all repeated imaginary
eigenvalues, ??????with multiplicity of r
Unstable, otherwise.

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
75
AisNon-Singular
Classificationoftheequilibriumpointofhigherordersystem
intonode,focus,andsaddlepointisnotaseasyassecondorder
system.Howeversomepointscanbeemphasized:
Theequilibriumpointisstable/unstablenodeifall
eigenvaluesarerealandhavethenegative/positivesign.
Theequilibriumpointiscenterifapairofeigenvaluesare
pureimaginarycomplexconjugateandallothereigenvalues
havenegativereal
Inthecaseofdifferentsignintherealpartofthe
eigenvaluestrajectorieshavethesaddletypebehaviornear
theequilibriumpoint

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
76
Trajectoriesarealongtheeigenvectorwithminimum
absoluterealpartneartheequilibriumpointandalongthe
eigenvectorwithmaximumabsoluterealpart.
Trajectorieshavespiralbehaviorifthereexistsomecomplex
(obviouslyconjugates)eigenvalues.
Spiralbehavioristoward/outwarddependingonthesign
(negativeandpositive)ofrealpartofthecomplexconjugate
eigenvalues.
Theseconceptscanbevisualizedandbetterunderstoodinthree
dimensionalcase

Advanced Control (Mehdi Keshmiri, Winter 95)
77
LyapunovIndirect Method in
Stability Analysis of
Nonlinear Systems

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
78
Therearetwoconventionalapproachesinthestabilityanalysis
ofnonlinearsystems:
Lyapunovdirectmethod
Lyapunovindirectmethodorlinearizationapproach
Thedirectmethodanalyzesstabilityofthesystem(equilibrium
point)usingthenonlinearequationsofthesystem
Theindirectmethodanalyzesthesystemstabilityusingthe
linearizedequationsabouttheequilibriumpoint.

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
79
A nonlinear system near its equilibrium point behaves like a linear:
•Nonlinear system:
•Equilibrium point:
•Motion about equilibrium point:
•Linearized motion:
•It means near &#3627408485;
??????:
Motivation: ()x f x ( ) 0
e
f x x ˆ
e
x x x ˆˆ( ) ( ) ( )
ee
    x f x x f x x f x ˆH.O.Tˆˆ
e

  


x
x
xxx A
f if
ˆ ˆ ˆ()
e

   
x0
x f x x Ax x x

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
80
Thismeansstabilityoftheequilibriumpointmaybestudied
throughthestabilityanalysisofthelinearizedsystem.
ThisisthebaseoftheLyapunovIndirectMethod
Example:inthenonlinearsecondordersystem
originistheequilibriumpointandthelinearizedsystemisgiven
by2
1 2 1 2
2 2 1 1 1 2
cos
(1 ) sin
x x x x
x x x x x x

    111 1
20
2 2 1 2
ˆˆˆ ˆ
ˆˆ ˆ ˆ ˆ
e
xxx x
xx x x x
   
    
    
x
f
x

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
81
Theorem(LyapunovLinearizationMethod):
Ifthelinearizedsystemisstrictlystable(i.e.alleigenvaluesofA
arestrictlyinthelefthalfcomplexplane)thentheequilibrium
pointintheoriginalnonlinearsystemisasymptoticallystable.
Ifthelinearizedsystemisunstable(i.e.inthecaseofrighthalf
planeeigenvalue(s)orrepeatedeigenvaluesontheimaginaryaxis
withgeometricaldeficiency(&#3627408479;>&#3627408475;−&#3627408479;&#3627408462;&#3627408475;&#3627408472;(??????&#3627408444;−&#3627408436;)),thenthe
equilibriumpointintheoriginalnonlinearsystemisunstable.ˆˆ isstrictlystable ( ) isasymptoticallystable  x Ax x f x ˆˆ isunstable ( ) isunstable  x Ax x f x

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
82
Theorem (Lyapunov Linearization Method):
Ifthelinearizedsystemismarginallystable(i.e.alleigenvaluesofAareinthe
lefthalfcomplexplaneandeigenvaluesontheimaginaryaxishaveno
geometricaldeficiency)thenonecannotconcludeanythingfromthelinear
approximation.Theequilibriumpointintheoriginalnonlinearsystemmay
bestable,asymptoticallystable,orunstable.
TheLyapunovlinearizedapproximationmethodonlytalksaboutthelocal
stabilityofthenonlinearsystem,ifanythingcanbeconcluded.( ) isasymptoticallystable
ˆˆ is marginallystable ( ) is marginallystable
( ) is unstable


   



x f x
x Ax x f x
x f x

Advanced Control (Mehdi Keshmiri, Winter 95)
Phase Plane Analysis of LTI Systems
83
The nonlinear system &#3627408485;=&#3627408462;&#3627408485;+&#3627408463;&#3627408485;
5
is
Asymptotically stable if &#3627408462;<0
Unstable if &#3627408462;>0
No conclusion from linear approximation can be drawn if
The origin in the nonlinear second order system
is unstable because the linearized system is
unstable
Example 15: 2
1 2 1 2
2 2 1 1 1 2
cos
(1 ) sin
x x x x
x x x x x x

    1 1
2
2
ˆ ˆ10
ˆ11ˆ
x x
xx
 
   
