Phycology lecture

DithJose 7,219 views 155 slides Sep 16, 2012
Slide 1
Slide 1 of 155
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155

About This Presentation

No description available for this slideshow.


Slide Content

Phycology Lecture
Coverage:
Algae: Microalgae -phytoplankton
Macroalgae -seaweeds
Sea grasses –vascular (upper margin of the
intertidal zone)
Mangroves –vascular (estuarine)
Beach and coastal –seashore (inland)
Plants Require:
Water and CO2
Mineral ions/Nutrients
Light –for photosynthesis

Development:
Life cycle –alternation of sporophytic and
gametophytic generation
Higher plants –involve tissues
(xylem –conduction of water
(phloem –conduction of food / by
products of photosynthesis)
Sporophytic Generation
Multi-celled diploid body producing haploid
spores
Gametophytic Generation
Multi-celled haploid body producing haploid
gametes

Algae Division
Cyanophyta(blue-green) -
Monera
Chrysophyta(golden algae/ diatoms)
Englenophyta(photosynthetic flagellates)
Pyrrophyta/Dinophyta(dinoflagellates)
Rhodophyta–red algae
Phaeophyta–brown algae
Chlorophyta–green algae
Pyrrophyta/
Dinophyta
(dinoflagellates)
Plantae

Intertidal Communication Ties
Species Major Sub-division Algal Groups
Ultra, Enteromorphasupra littoral zonespecies w/ stand dessication
Prostrate brown algae supra littoral fringe species w/ strong waves
Sargassum, Turbinariamid littoral species w/ anchored in deep
substrate
Brown Algae sub littoral w/ stand variable illumination
w/ stand wave action
w/ stand temperature
Factors
a. Tide
tidal amplitude (vertical range)
tidal frequency (diurnal, semi diurnal mixed)
b. Exposure of Algae
shore topography
wave action
time of dessication
c. Type of substrate
basic composition (material forming)
peeble
calcified rock

Algal Body/Thallus
Higher PlantsAlgae
Roots rhizoids/rhizomes (holdfast)
Stems stipes
Leaves blades
Pigments:
Chlorophyll –a, b, c, d, e
Carotenoids –B carotene, L-carotene(yellow)
Xantophyll –Lutein, Zeaxanthin, Fucoxanthin, Neoxanthin
( yellow/golden)
Phycobillins –Phycocyanin (blue-green), phycoerythrin (red, purple)
Reserved Foods
Cellulose
Mannitol
Laminarin/chrysolaminarin
Oil
Starch

Morphology
Filamentous –single/double stranded
Foliose –blade like
Siphonoceous–siphon
Crustose–encrusted with CaCo3
Parenchymatous-medulla cells cuboidal/spherical
Pseudoparenchymatous-medulla cells isodiametric
Location of Meristems–actively dividing cell
Apical-apex region (elongate)
Diffuse-all over (foliose)
Intercalary-at certain regions (usually give rise to branches)
Habit:
sessile/attached Phytoplankton
free-floating picoplankton-2 um
planktonic ultraplankton–2-5 um
nanoplankton–5-20
microplankton–20-200 um

Division Pigment Reserved Food Habit
Cyanophytachloro a starch planktonic
Carotene benthic
Phycobillin
Chrysophytachloro a& b oil planktonic
Xanthophyll chrysolaminarin
Carotene benthic
Pyrophyta chloro a& cstarch planktonic
Xanthophylloil
Carotene fats
Phaeophyta chloro a & c laminarin benthic
Xantophyll oil
Carotene

Rhodophyta chloro a starch benthic
Carotenes
Phycobillin
Chlorophytachloro a & b starchbenthic
Carotene
Anthophyta chloro a & b starchbenthic
Carotenes
Types of Gametes
1. isogametes (sex cells appear the same)
2. anisogametes (unequal)
3. heterogametes (unequal)
4. homogametes (sex cells appear the same)

Spores Produced Organs
Monospore – monosporgangium
Tetraspore – tetrasporangia
Carpospores- carposporangium
Conchospore- conchosporagium
Auxospore – auxosporangia
Organs:
Male –antherium/spermatium
Female –ooganium
Homogametes (sex cells appear the same)
Special Types

Forms:
Morphology
Crustose –encrusted w/ CaC03 -Coenocytic
Filamentous –as a filament -Cylindrical
Foliaceous –leafy -Cartilaginous
Siphonaceous –
Distribution
-Based on availability of photosynthetic pigments (red and blue) and activation
of accessory pigments, carotenoids, xanthophylls and phycobillins
HTM
Green (dominant) Intertidal/Litoral
Brown
Red
Photosynthesis at; LTM
-Red and Blue Brown (dominant) Effective Light
Red
Green
Red (dominant)
Green
Brown

R O YG B I V
chlorophyll
xanthophylls
carotenoids
chlorophyll
Water Level

Water Characteristics:
Transparency
-affect photosynthesis at certain depth
Turbidity
-Low penetration
-Limits photosynthesis
Substrate Characteristics:
Algae types based on Root Structure
Holdfast –discoid holdfast
Rhizoids –stolon
Haptere –spines/spires
Ecology of the Algae
Physical:
Temperature -factor for the rate of metabolism. Higher
the temperature, rate of metabolism up to the optimum
range.

Shelford’s Law of Tolerance
fatal
deficient
optimum
excessive
fatal
Factor (Temperature/Salinity etc.)

Temperature Sources :
1. radiation
2. radioactive decay of substances
3. day length
Heat Loss
-conductive process
-convection
-current flow
Water Current/Movement
-waves
-currents -distribution of nutrients
-tides

Photynthesis –spectrum (ROYGBIV)
Day length: long –chlorophyll & carotenoids
short –xanthophylls and phycobilins
Affects;
-Metabolism
-Growth
-Occurrence
-Distribution
-Reproductive Maturity
Penetration and Absorbance
Visible light –390 nm to 760 nm
Ultra violet light –290 nm to 390 nm
Infrared –760 nm to 3000 nm
________290_________390________760________30000
UV VL IR

FATE OF LIGHT
reflected (90%) scattered scattered & reflected back
absorbed absorbed
(10-45%)
Transmittance
T = I1 / I2 Overall
I1 = irradiance at depth 1 Transmitance
I2 = irradiance at depth
50 m I
2
25 m I
1

Distribution
Zonation of Algae
Light
-irradiance Green (upper)
-temperature
-substrate
Brown (mean)
Red (deeper water)
Change of Light
Effects:
-color pigmentation/activation
-reserve food production rate
-reproductive biology
-gametophytic development
-sporophytic development

Temperature
Effect:
Biological organization
-Molecular (biochemical reaction; carbohydrate,
protein metabolism)
-Cellular
-Organismal
-Community Structure
Organs:Spermatangium –sperm (male)
Ooganium –egg (female)
Sporangium –spore
Effects:
High temperature
-denaturation of protein
-damage to enzymes
-damage in the cell membrane

Low temperature:
-causes disruption of lipids
-damage to cell membrane
-mechanical damage of cell through the formation of
ice crystal
Tolerance
-increase in cellulose
-increase in cell membrane
-frost camouflage
-increase in the reserve food products
-efficient but minimal use of products
Water Movement
-Current flow
-tradewind
-easterlies
-westerlies

Effect
-distribution of heat(-conduction, convection)
-distribution of nutrients effected by:
-surface rate
-vertical movement
-upwelling
-distribution of gases
-distribution of spores, sex cells
Generation of Waves
1. caused by wind (meteorological)
2. caused by tide (gravitational pull )
3. earthquake and land slide (geologic)
Waves Result from:
1. Deflection of wind as it blows over the surface
2. changes in atmospheric pressure

Anatomy of Waves
H –height Crest
T –time
L –length
D –water depth
Length
Height Depth
TimeWave Break:
D = (4/3) H (shallow water)
H = 1/7 (L) (deep water)

1st quarter
Neap Tide
Full Moon Spring tide Spring tide New Moon
Neap Tide
3rd quarter

Waves
WC –wave crest
WT –wave time/period
WH –wave height
WD –wave depth
Shallow water break happens when ¾ H ;
i.e Drag/Friction at the bottom of the wave
happens
Tides –the periodic rise or fall of sea level due to
gravitational attraction between sun, moon
and earth

Neap Tide (1st & 3rd Quarter)
Centrifugal
force
(rotation of the
earth in its
axis)
Moon
Gravitational Pull
Spring Tide

Classifications:
Semi-diurnal –2 Low and 2 High
Diurnal –Single Low and Single High
Mixed –Semi-diurnal and single low/single
high
Spring tide (S –M –Ealigned)
Neap tides (S –M-E at45
o
angle)

Currents
Horizontal current –wind driven ( westernlies, easterlies, trade
winds) Caused by prevailing wind patterns
Deep Vertical Currents
C-slope, C-rise and abyssal plain (the result of salinity and
temperature gradient)
Air-mixture of different kinds of gases
Process;
First;Equator and at warmer latitudes, heated air
expands and rises
Later:
Low pressure area is produced and cooled air moves
Rising air is carried north or south of the equator and
eventually cools, contracts and sinks, creating a high
pressure area

Deflectionofairmasses:totherightinN.Hemisphere
andtotheleftinS.HemisphereduetoCorioliseffect
becauseofthespinningoftheplanet.
Easterly Tradewind
-produces the equatorial current
EQ Current : North –western B. current
Eastwind -Western Trade wind
Vertical Currents
Upwelling/Downwelling Caused by:
1. halocline/thermocline (salinity/density and
temperature grdient)
2. Offshore winds –push the surface and cause the
deep water to move to the surface.

3.Divergence–producedwhendeepwater
andsurfacecurrentinteractionoccursthat
ispossiblewhencurrentspassthrough
anothercurrent
4.Wakestrain–nearbywatersurfaceis
pulledalongwithastrongcurrent
5.Turbulence–duetorapidcurrentpassing
overshallowandroughbenthos

Chemical Factors
Affect the: Occurrence of marine plants
Distribution
Abundance
Rep cycle –seasonal (die-off; dormant in
the production of sex cell/spore
Factors:
Pure water plus salt (Na, Cl, Mg ,Ca) increase,
correspondingly increase
1. osmotic pressure
2. boiling pt
3. density
4. conductance
Lower:
1. vapor pressure
2. freezing pt (solidify pure water)

SalinityRanges;
Oceanic –32-38 ppt
Neritic –25 –32 ppt
Estuarine –1-15-32 ppt
Hypersaline (Red Sea) –above 38 ppt
Seaweeds Classification
Euryhaline –30 to 40 ppt
Polyhaline –18 to 30 ppt
Mesohaline –3 to 18 ppt
Oligohaline -.5 to 3 ppt
Brackist -.5 to 5 ppt

Measurement of Salinity
1. Density –hydrometer –specific gravity
pycnometer –wt of salts
both consider standard temperature and pressure
2. Resistance to electrical current –conductivity meter
-salinometer
3. Bending of right from air to seawater –refractometer
4. Concentration of chlorine –chlorinity; titration with
AgN03 as major salt
Hydrometer –sp. Gravity x salt (k)
Pycnometer –weight of salts
Refractometer –measures the refraction index of
medium air to pure water = 1.3330

Conductivity Meter –amount of chlorine
Cl (ppt) = 0.7324 R15
R15= rate of electrical conductance of one sample to one
where;
Salinity = 35 ppt; 1 atms 15oC
Sal = .003 + (1.805 x chlorinity (20oC)
Lab: AgN03 + NACl –AgCl + NaN03
Dissolved Oxygen;
0.9% in water
21% in air
Sources: Air, Plants

Concentration:
Polar –(2x) –compared to tropical region
Lower temperature/salinity
Below photic zone = 0.2 to .3% (low)
Run-off = high O2
C02 in Seawater
Available either as:
C03
HC03
H2C03
H + removal (Acid) –negative effect
(Nutrients/elements are tied up until
Alkaline free)

Ion Concentration in Seawater
6.8–8.4 (normal reading)
pH –rises ; C02 is removed via photosynthesis
pH –lowered; C02 is added via respiration
Removal of C02
-Carbonate
-Bicarbonate
-Carbonic acid
Nutrients
2l –essential elements other trace elements
4 –elements for plant growth
-C, N, P, K, O
S -major component in protein synthesis
(300 mg/L (Si02) diatoms)

0 –857,000 mg/L
N –28 mg/L
P –0.07 mg/L
K –0.03 mg/L
C –28 mg/L
Auxotrophic (seaweeds) req. some Vitamins:
B12–Cyanocobalamin
B1 -Thiamine
Biotin
Nitrogenous
N03 –nitrate –1 to 43 ; H2PO4 0.07-0.07
N02 -nitrite –0.01 to 3.5
NH3 -ammonia –0.35 to 3.5

Nitrogen Cycle
Plants
Animals Urine
Decomposition
(bacteria and fungi)
Atmosphere Amino acid
Dissolved N2 Ammonification
N2 fixation Photochemical fixation Denitrification
Ammonia (Lightning)
(Blue green algae) ammonia
Nitrate(NO3) Nitrite(NO2)Nitrification

Phosphorous
Silica (cell wall formation)
Si02–0 –0.5 mg/L
Phosphorous Cycle
Land
Plants Higher Organisms
Weathering Dissolved PhosphateDissolved Phosphate
(inorganic) (organic)
Particulate Phosphorus
(inorganic + organic)
Sediment

Macro Algae (Seaweeds)
1. Unicellular to filamentous -Chlorophyta
2. filamentous to thalloid -Phaecophyta
-Rhodophyta
Evolved –Pre-cambrian
Types of Meristem
1. apical meristem –division of apical cells
2. diffuse meristem –throughout the plant
3. intercallary meristem –specific growth regions
Growth Construction
1. filamentous –one to two rows of cells
(Cladophora)
2. foliose –flattened/membranous (Halymenia)

Cytology of Green Algae
I. Physiological Characteristics
1. chloro a and b
2. B –carotene
3. xanthophylls
-lutein
-zeaxanthin
-violaxanthin
-siphonin
-siphonoxanthin (play a role in acclimation in
deep water to the b-g spectrum

II. Cell Structure
-eukaryotic
-uninucleated (most)
-multi nucleated (few)
-coenocytic –multinucleated in a single cell
III. Chloroplast (thyllakoids)
-cup-shaped
-discoid
-reticulate
-laminate
Pyrenoids –amylase containing protein bodies

IV. Cell Wall
-cellulose microfibrils –typical in flowering
plants and Ulvalves
-highly crystalline siphonodadales (Cladophorales)
-polymers of xylan and mannan (Caulerpales)
-CaC03
V. Cell Division
a. Karyokinesis
-closed (intranuclear) –no break of n. membrane
-open (nuclear envelop disappears , e.g. like in
flowering plants)

b. Cytokinesis
-closed -spindle fibers parallel to cross
wall
-open –spindle fibers at right angle
Asexual spores –zoospores
Motile cells:
-Isokontae –pair of apically inserted flagella
of equal length that lack hairs
-Heterokontae –unequal length
Life History
Alternation of: Haploid (gametophytic)
Diploid (sporophytic)

Patterns
 Haplontic –dominant phase is haploid with zygote
only as diploid
Fusion
zygote
1N 2N
gametes
Zygospore
Meiosis
2N
Zygospore

Diplontic Life History –diploid phase is dominant
Anteridia
Fusion
Oogonia 1N 2N
Meiosis
1N 2N

Haplodiplontic –dominant phases are haploid and
diploid
Fusion
Gametophytic 1N 2N
Sporophytic
Meiosis
Isomorphic

Heteromorphic –haploid & diploid; unequal
Fusion
1N 2N
Meiosis

Chlorophyta
Taxonomy
Class (phyceae)
1. Chlorophyceae
2. Prasinophyceae
3. Charophyceae
Prasinophyceae Features :
1. unicellular, motile and appearing as green
2. cells with one or more layers of fibrillar scales
3. the flagella is always attached in groove covered with
scales and hairs
4. the flagellal roots with complex basal body
5. with single round-shaped chloroplast with pyrenoids
6. specialized ejectosome. e.g. Pyraminomas –pear-
shaped unicel with 4 flagella

Charophyceae –stone worts; ancient origin/evolution
Division:Chlorophyta
Class: Chlorophyceae
Chloroplast with pyrenoid
–multi-uninucleated
–haploid –haplodiplontic life history
–filamentous/caenocytic morphology
1. Order: Ulvales
Family: Percuriaceae -biserriate
Schizomeraceae -uniseriate
Prasiolaceae -filamentous/monostromatic
Monostromaceae -monostromatic
Ulvaceae -diastromatic and tubular

Common Characterictics :
Parietal chloroplast
Laminate
Pyrenoid
Rep-roduction(Anisogany/Isogamy)
2. Order: Chladophorales
Genera: Cladophoraceae-filamentous
Rhizoclonium-delicate, unbranched
filament with rhizoids
Chaetomorpha-coarse, unbranched
Cladophora - branching filament

Family: Anadyomanaceae -filamentous but
fused to form blades
Anadyomene -brilliant green with
anastomosed filaments
3. Order Acrosiphonales
Family: Acrosiphonaceae
Genera: Urospora- unbranched filament
Spongopora- branched, uninucleated
Acrosiphonia- branched,
multinucleated
General Characteristics:
-single perforated chloroplast with hetero
–haplodiplontic life history

4. Order Siphonocladales
Family: Siphonocladaceae -filamentous
Family: Boodleaceae-net like blade with
anastomosing filaments
Family: Volaniaceae-aggregation of vesicle
Siphoclodales
Boodlea
Valonia
General Characteristics:
-segregated cell division
-they enlarge to form and equal or similar vesicle
e.g. velonia degagropila
dictyospharia caveriosa

5. Order Caulerpales–siphonous, coenocytic
Family: Bryopsidaceae
Genera: Broyopsis–hetero-haplo-diplontic life
history
Derbesia
Family Caulerpaceae–erect blades with rhizoid
-Trebeulae in growth of cell wall
-Leucoplast –without cross wall (coenocytic)
Genera: Caulerpa
Family Codiaceae–coenocytic with filament called
siphons
-surface cell is made of utricles
-diplontic, onisogametes

Family Udoteaceae –heavily certified to
Genera: Halimeda
Udotea
Penicillus
Chlorodesmis
Avrainvillea
6. Order Dassyclaudales
2 Family -Dasaycladaceae
Acetabulariaceae
Characteristics: whorl branching
Superficial calcification
Diplontic, isogametic (produced in cyst)
Genera: Dasycladea
Cymopolia
Acetabularia

Division: Phaeophyta(Brown Algae)
Class:Phaeophyceae
265 genera
1,500 –2,000 species
Construction
a. filamentous
b. massive intertidal growth
c. lithophytic –attached to stable substrate
d. epiphytic –living on surface of other plants
e. drift population (S. filamentous
(S. ratens
Uses:
-alginic acid (medicine, ice cream, shampoo)
-fodder (food of animal additives
-fertilizer

Cytology
-Chloro a & c
-B. carotene
fucoxanthin and neofucoxanthin –brownish, golden
brown, brown-green, greenish, yellow color
-Carotenoids
-Uninucleated
-Thallykoid in bonds of 3
-Reserved food
Motile Cells
-heterokontae (unequal flagellum –usually inserted)
a. acronomatic
-shorter
-smooth
-basally oriented

b. pleuronomatic
-long
-anteriorly nemated
-hairy
Life History
-diplontic
-gametes derived in sporangia
1. unilocular
2. plurilocular
Taxonomy
1. Ectocarpales
Ectocarpaceae
Ectocarpus

Characteristics:
-uniseriate filament
-isomorphic –equal in form
2. Ralfsiales
Ralfsiaceae
Ralfsia
Neoderma
Characteristics:
-crustose morphology
-diplontic
-gametes (isogametes, heterogametes)
3. Sphacelariales
Sphacelariaceae
Clodostaphus
Holotrix

Characteristics:
-small, filamentous, multiseriated
4. Class Tiliopteridales
-filamentous construction
-uniseriate –multiseriate
-trichothallic growth
Genus: Halospora
5. Class Cutleriales
-amisogamete
-crustose morphology
-trichothallic
-alternation of isomorphic life history

6. Class Dictyotales
-pan tropical
-isomorphic –haplo-diplomatic
-parenchymatous construction
DIVISION PHAEOPHYTA
Characteristics:
-chloro a and c
-fucoxanthin (xanthophylls) predominate
-laminarin and oil are reserved foods
-haplo-diplomatic life history
asexual –fragmentation (vegetative)
sexual –isogametes
-products: alginate

Order Fucales
Blade morphology
-crustose –encrusted with lime
-duplicated –double margin
-cystic –enclosed reproductive structure
(antheridium –sperm)
(ooganium –egg)
2 years life cycle
1st year –vegetative growth
2nd year –reproductive age

Family Fucaceae
Genera: Hormophysa(triangular blade)
Sargassum duplication
S. crispifolium
S. polycystum
S. giganteifolium
Characteristics:
-predominantly floating (pneumatocyst)
-erect thallus with air bladder
-at the margin of littoral and sub-littoral zone
Genera: Turbinaria ornata(ornate leaf without
branching)
T. trialata(with branching)

Family Cystoseriaceae
Characteristics:
-triangular type of thallus
-seldom with air bladder
Genera: Hormophysatriquetra’
Cystoseira
Order Scytosiphonales
General Characteristics:
-hallow ball structure erupting at maturity
-morphology net-like to ball-like
-sexual reproduction only
-seasonal (summer)

Family Scytosiphonacea
Genera: Scytosiphon
Hydroclathus
Chnoosepora
Colpomenia
Order Dictyotales
General Characteristics
-divaricatebranching
-heavily calcified
-linear branching to flabellate

Family Dictyotaceae
Genus Dictyoty –linear branch, turcated, semi-permanent
Padina –flabellate blades, destructs lines of growth,
heavy calcification
Economic Importance
-source of alginate-medicinal property
-fertilizer -insecticidal property
-animal fodder
Laminariales
-large group of brown algae
-hetero morphic (unequal; sporophytic; gametophytic)
-developed:
rhizoid
stem
blade

RED ALGAE (RHODOPHYTA)
Characteristics
-intertidal to subtidal –chloro to phycoerythrin
change in color
-enkaryotic
-flagella lacking
-phycobillin (phycoerythrin
-reserved food (Floridean starch)
long chain of glucose to lipid

Cytology
-ChloroA packed in a thyllakoid
-Phycocyanin
r –phycocyanin
c –phycocyanin
-Carotenoids
B-carotene
L –carotene
-pyrenoid(starch grain) distinct
-phycocolloids
agar-(agarophytes)
carrageenan–( carrageenophyte)
funoran
fucellarian
-starch (Floridean)
Xylose
amylase

Life History
-triphasic(3 life stages)life history
1. gametophytic–produce gametes
2. carposphorophytic–produce carpaspore
3. tetrasporophytic–produce tetraspore
Other Spore Types (Asexual)
-monospore–derived monosporagia
-paraspore–derived parasporangia
-carpospore–derived carposporangia

Taxonomy
DIVISION –RHODOPHYTA
Class –Rhodophycidae
Sub class –Bangiophycidae
Floridiophycidae
Characteristics:
–uninucleatecells
–single stellatecentral plastids
–diffuse (intercellary) meristem
–absence of pit connection
–must have absent sexual reproduction
–except, parphyra, bangiaand polysiphonia
–simple venicellularin multicellulargroup

3 Orders
Parphyridiales
Campsogonales
Bangiales
a) Prephyridiales
–Unicellular-pseudofilamentous
–Colonial -no sexual reproduction
b)Comprogonales
–produce monosporeof unequal division
–Rep Groups:
-Erythrocladia–filamentous
-Erythrotrichia
c) Bangiales
monotype –monostroma
–diatromatic
–filamentous
Rep. Group
-Bangia
-Porphyra

Sub-class–Florideophycidae
occurrence of multinucleated cells
presence of pit plug
presence of several discoid chloroplast
apical cell division
multicellular(macroscopic)
sexual reproduction (gametophyticplant)
Order: Bangiales
Family: Bangiaceae
Genera: Porphyra
Bangia
Order: Palmariales
Genera: Rhodymenia

Order: Nemalionales
Genera: Liagora;soft calcareous Helminthocladia
Order: Bonnemaisorales
Genera: Bonnamaisona
Asparagosis
Order: Cryptomoniales
Genera: Halymenia
Crytonemiaw/ auxiliary cells
Grateloupia
Order: Corallinales
Genera: Corallina
Lithothammion
Amphiroa
Jania
Order: Gigartinales
Family: Chaetangiaeecae
Galaxura

Order: Gigantinales
Family: Solieriaceae
Eucheuma
Kappaphycus
Family: Gracilariaceae
Gracilaria
Order: Ceremiales
Family: Ceremiaceae
Genera: Ceramium
Lithothamnium
Family: Dellesereaceae
Genera: Rhodomelaceae
Laurancia
Acanthophora
Florideophycideae

Classes:
Palmariales
-male gametophyeand tetrasporophytesare
microscopic
-female gametophyte is microscopic
-tetrasporophyteis parasite in female gametophyte
Genus:
Palmaria/Rhodymenia
Nemaliales
-heterotrichous–crest or postratethallus
Family: Helminthocladaceae
e.g.Liagora–heavily calcified
Helmithocladia–gelatinous

Gelidiales
-typical triphasiclife history
gametophytic
tetrasporophytic
-presence of nutritive cells (after
fertilization)
-agar sources
Genera: Gelidiella
Gelidium
Bonnemaisonales
Bonnemaisona-heteromorphic
gametophytic, tetrasporophyticgeneration
Asparagopsis–fee living filamentous;
tetrasporophytic

Cryptonemiales
-auxiliary cells on a vegetative branch
Genera:
-Cryptonemiales–heteromorphiclife
history w/ crustae
-Gloiosiphon–tetrasporicphase and
fleshy gametophyte
e.g. Halymenia,Grateloupia, Gloiosiphon
Corallinales
-with white cells
-reproduction structure in pits
conceptacle
-intercalary and apical meristem

Articulated species (non-calcified with genicula, joint
between segments)
e.g. Amphiroa
Non-articulated species
-lack geniculawhich are crustosewith erect non-
jointed branched
e.g. Lithothannion
Family: Solieriaceae
Genera: Soliera, Eucheuma
Family; Kappaphyceae
Characteristics:
-fission of cells that occur during fertilization
-some have filamentous medulla

Family: Gracilariaceae
-multiaxialconstruction w/ medullarylayer which is
parenchymatous
Genera: Gracilaria
Gigartina
Mastocarpus
Rhodymeniales
-multi axial growth and triphasislife history
(isomorphic)
-gametophyte with a procarp(arrangement of 3 to 4
cells carpogonialbranches adjacent 2 auxiliary cells
e.g. Genera:
Champia
Chrysonemia

Ceremiales
-filamentous, uniseriated
-carposporophytic stage is exposed
-multinucleated cell
-pit connection visible
3 Family (Dascyaceae, Rhodomelaceae, are provided with
trichoblast /colorless hair)
Genera: Laurencia
Hypnea
Acantophora
Dasya

Intertidal Communication Ties
Species Major Sub-divisionAlgal Groups
Ultra Enteromorpha supra littoral zonespecies w/ stand dessication
Prostate brown algae supra littoral fringe species w/ strong waves
Sargassum turbinaria mid littoral species w/ anchored
in deep
Substrate
Brown Algae sub littoral w/ stand variable
illumination
w/ stand wave action
w/ stand temperature
Factors
a. Tide
tidal amplitude (vertical range)
tidal frequency (diurnal, semi diurnal mixed)
b. Exposure of Algae
shore topography
wave action
time of dessication

c. Type of substrate
basic composition (material forming)
peeble
calcified rock
calcified rock
limestone rock
silt / mud
textures
smooth
rugged
d. Biological Interaction
-relationship among algae

1. Succession-involves seral
Bare -pioneer -succeeding
Species species
Bare -seagrass –Ulva–Sargrassum-Gracilacia
Stable
a.) Progressive –bare –climax
b) Reverse –climax -bare
Climax
Community
1
2
3

2. Competition
a.) Interspecies –between 2 different species
b.) Among a particular species
shading of Ulvaagainst Enteromorpha
Ulva shading Laurencia
Sargassumshading Ulva,
Enteromopha Caulaperpa
Species of Ulva-competing for
a limited space
Sargassumspecies competing
for light
3. Grazing
-feeding
-preferences (profifying) disappear
-less preferences

Micro algae Communities
Division –Cyanophyta
blue green (phycobillin)
nitrogen fixer (heterocyst)
Significance:
-food chain / food web (Iry producers)
absorb inorganic substances
-Nutrient recycling
Distribution
-epizoic, epiphytic
-endozoic, endophypic
-sessile (substrate attached)

Characteristics:
-cyanophycean starch
-chloro a and b (chlorophyta)
-some endolithic –within rocks
-oligotrophic
Cytology:
Cytoplasm of 2 types
-chromoplasm –periphery and
pigmentry
-centroplasm –center and usually pail

Accessory Pigments:
-Carotene
-Xanthophylls (myxoxanthin)
zeaxanthin
-Phycobillins
Arranged in a thyllakoid (phycobillisomes)
-Phycocyanin
-Phycoerythrin
-Allophycocyanin
-Gas vacuole –bounded by carboxysomes
-Reserved Food
-Starch
-Granules
-polyhedral
-polyglucan
Arranged in a
thyllakoid
(phycobillisomes)

Reproduction:
-fragmentation of filaments at
hormogonia
-occur where akinetsare located
Resting spore
-endospore –product of internal
division of cytoplasm
Resting spore

Taxonomy:
Cyanophyceae
Orders: Chamaesiphonales
(filamentous and endopore producing)
Chroococcales (unicellular
or colonial)
Oscillatoriales (filamentous)

Division: Prochlorophyta composed of 3
genera;
3 Genera
Prochloron
Prochlorotrix Chloro a and b
Prochlorococcus
Prochloron-intracellular, obligate
symbionts ; free living group
Prochlorotrix, Prochlorococcos-
filamentous; causes blooms in
lakes

Division Euglenophyta
-grass green motile unicells
-chloro a and b, B carotene
-xanthophyll (neoxanthin)
-astaxanthin (responsible for red color)

Flagellum
Ampulla (reservoir)
Non-emergent falgellum
Blepharroplast
Chloroplast
Paramylum (starechgrain)
C. vacuole
Nucleus
Cytoplasm

Taxonomy:
Class Euglenophyceae
Trophic Classification
-phageotrophic (particle absorbing,
particle ingesting)
-osmotrophic –absorption of organic
matter to photosynthesis
Orders:
Eutretiales
-photosynthetic
-flagella, unequal
-active, euglenoid movement

Euglenales
-photosynthetic, one emergent
flagella
-sessile (attached to substate)
-with lorica (in capsulized)
Heteronematales
-phageotrophic, particle colorless
and leaking photoreceptors;
flagellar swelling
Rhabdonematales
-osmotrophic type
Sphenomodales
-both (osmotrophic, phageotrophic)

Division Pyrrophyta (Dinoflagellates)
Trophic Forms:
-autotrophs –free living
-auxostrophic –need other accessory
elements (vitamins)
-heterotrophic –phageotrophic
-symbiotic –with zooxanthellae

Cytology:
-chloro a and b
-B carotene
-peridinine
-diadinoxanthin
-specialize cells
-trichocyst –rod of protein material
-nematocyst –ejectile organelle
-pusule –sac-like (function as
contractile vacuole)
-muciferous odies –mucilage bodies
that attach to the subatate

Eyespot
Forms:
1. mass of lipid globules
2. single layer of globules
3. double layer of globules
4. complex ocellus
Life History:
1. isogametes (sexual fusion)
onisogametes
2. haplontic life history

Taxonomy
Heterotrophic:
1. Ebriophyceae –colorless, naked
Parasitic naked cells
2. Ellobiophyceae
3. Syndimophyceae
4. Dinophyceae Group
a. Blastodiniales –parasitic
b. Dingamoebomeales –amoeboid
c. Dinoclomiales –filamentous
d. Gleodiniales –colonial
e. Pyrocystales –coccoid
Parasitic naked cells

Peridianiales
-motile
-armonia
-toxic
Cause of ciguatera –fish poisoning
e.g. Ceratium
Gonyaulax
Gymnodiales (common red tide forming
species)
e.g. Gymnodinium
Cause of ciguatera
–fish poisoning

Division:
Cryptophyta (Cryptomonels)
Characteristics:
-assymetrical (dorso-ventral flatter)
Top/ventral cross-section
-pleuronematic flagella, unequal
-ejectosomes at the reservoir
-single chloroplast
-one to many pyrenoids
-red, brown, olive, yellow –is due to
chlorophyll and phycobillin
-Nucleomorph –double membrane DNA
enclosed in ER
Tags