Phycology Lecture
Coverage:
Algae: Microalgae -phytoplankton
Macroalgae -seaweeds
Sea grasses –vascular (upper margin of the
intertidal zone)
Mangroves –vascular (estuarine)
Beach and coastal –seashore (inland)
Plants Require:
Water and CO2
Mineral ions/Nutrients
Light –for photosynthesis
Development:
Life cycle –alternation of sporophytic and
gametophytic generation
Higher plants –involve tissues
(xylem –conduction of water
(phloem –conduction of food / by
products of photosynthesis)
Sporophytic Generation
Multi-celled diploid body producing haploid
spores
Gametophytic Generation
Multi-celled haploid body producing haploid
gametes
Intertidal Communication Ties
Species Major Sub-division Algal Groups
Ultra, Enteromorphasupra littoral zonespecies w/ stand dessication
Prostrate brown algae supra littoral fringe species w/ strong waves
Sargassum, Turbinariamid littoral species w/ anchored in deep
substrate
Brown Algae sub littoral w/ stand variable illumination
w/ stand wave action
w/ stand temperature
Factors
a. Tide
tidal amplitude (vertical range)
tidal frequency (diurnal, semi diurnal mixed)
b. Exposure of Algae
shore topography
wave action
time of dessication
c. Type of substrate
basic composition (material forming)
peeble
calcified rock
Morphology
Filamentous –single/double stranded
Foliose –blade like
Siphonoceous–siphon
Crustose–encrusted with CaCo3
Parenchymatous-medulla cells cuboidal/spherical
Pseudoparenchymatous-medulla cells isodiametric
Location of Meristems–actively dividing cell
Apical-apex region (elongate)
Diffuse-all over (foliose)
Intercalary-at certain regions (usually give rise to branches)
Habit:
sessile/attached Phytoplankton
free-floating picoplankton-2 um
planktonic ultraplankton–2-5 um
nanoplankton–5-20
microplankton–20-200 um
Division Pigment Reserved Food Habit
Cyanophytachloro a starch planktonic
Carotene benthic
Phycobillin
Chrysophytachloro a& b oil planktonic
Xanthophyll chrysolaminarin
Carotene benthic
Pyrophyta chloro a& cstarch planktonic
Xanthophylloil
Carotene fats
Phaeophyta chloro a & c laminarin benthic
Xantophyll oil
Carotene
Rhodophyta chloro a starch benthic
Carotenes
Phycobillin
Chlorophytachloro a & b starchbenthic
Carotene
Anthophyta chloro a & b starchbenthic
Carotenes
Types of Gametes
1. isogametes (sex cells appear the same)
2. anisogametes (unequal)
3. heterogametes (unequal)
4. homogametes (sex cells appear the same)
Spores Produced Organs
Monospore – monosporgangium
Tetraspore – tetrasporangia
Carpospores- carposporangium
Conchospore- conchosporagium
Auxospore – auxosporangia
Organs:
Male –antherium/spermatium
Female –ooganium
Homogametes (sex cells appear the same)
Special Types
Forms:
Morphology
Crustose –encrusted w/ CaC03 -Coenocytic
Filamentous –as a filament -Cylindrical
Foliaceous –leafy -Cartilaginous
Siphonaceous –
Distribution
-Based on availability of photosynthetic pigments (red and blue) and activation
of accessory pigments, carotenoids, xanthophylls and phycobillins
HTM
Green (dominant) Intertidal/Litoral
Brown
Red
Photosynthesis at; LTM
-Red and Blue Brown (dominant) Effective Light
Red
Green
Red (dominant)
Green
Brown
R O YG B I V
chlorophyll
xanthophylls
carotenoids
chlorophyll
Water Level
Water Characteristics:
Transparency
-affect photosynthesis at certain depth
Turbidity
-Low penetration
-Limits photosynthesis
Substrate Characteristics:
Algae types based on Root Structure
Holdfast –discoid holdfast
Rhizoids –stolon
Haptere –spines/spires
Ecology of the Algae
Physical:
Temperature -factor for the rate of metabolism. Higher
the temperature, rate of metabolism up to the optimum
range.
Shelford’s Law of Tolerance
fatal
deficient
optimum
excessive
fatal
Factor (Temperature/Salinity etc.)
Temperature Sources :
1. radiation
2. radioactive decay of substances
3. day length
Heat Loss
-conductive process
-convection
-current flow
Water Current/Movement
-waves
-currents -distribution of nutrients
-tides
Photynthesis –spectrum (ROYGBIV)
Day length: long –chlorophyll & carotenoids
short –xanthophylls and phycobilins
Affects;
-Metabolism
-Growth
-Occurrence
-Distribution
-Reproductive Maturity
Penetration and Absorbance
Visible light –390 nm to 760 nm
Ultra violet light –290 nm to 390 nm
Infrared –760 nm to 3000 nm
________290_________390________760________30000
UV VL IR
FATE OF LIGHT
reflected (90%) scattered scattered & reflected back
absorbed absorbed
(10-45%)
Transmittance
T = I1 / I2 Overall
I1 = irradiance at depth 1 Transmitance
I2 = irradiance at depth
50 m I
2
25 m I
1
Distribution
Zonation of Algae
Light
-irradiance Green (upper)
-temperature
-substrate
Brown (mean)
Red (deeper water)
Change of Light
Effects:
-color pigmentation/activation
-reserve food production rate
-reproductive biology
-gametophytic development
-sporophytic development
Temperature
Effect:
Biological organization
-Molecular (biochemical reaction; carbohydrate,
protein metabolism)
-Cellular
-Organismal
-Community Structure
Organs:Spermatangium –sperm (male)
Ooganium –egg (female)
Sporangium –spore
Effects:
High temperature
-denaturation of protein
-damage to enzymes
-damage in the cell membrane
Low temperature:
-causes disruption of lipids
-damage to cell membrane
-mechanical damage of cell through the formation of
ice crystal
Tolerance
-increase in cellulose
-increase in cell membrane
-frost camouflage
-increase in the reserve food products
-efficient but minimal use of products
Water Movement
-Current flow
-tradewind
-easterlies
-westerlies
Effect
-distribution of heat(-conduction, convection)
-distribution of nutrients effected by:
-surface rate
-vertical movement
-upwelling
-distribution of gases
-distribution of spores, sex cells
Generation of Waves
1. caused by wind (meteorological)
2. caused by tide (gravitational pull )
3. earthquake and land slide (geologic)
Waves Result from:
1. Deflection of wind as it blows over the surface
2. changes in atmospheric pressure
Anatomy of Waves
H –height Crest
T –time
L –length
D –water depth
Length
Height Depth
TimeWave Break:
D = (4/3) H (shallow water)
H = 1/7 (L) (deep water)
1st quarter
Neap Tide
Full Moon Spring tide Spring tide New Moon
Neap Tide
3rd quarter
Waves
WC –wave crest
WT –wave time/period
WH –wave height
WD –wave depth
Shallow water break happens when ¾ H ;
i.e Drag/Friction at the bottom of the wave
happens
Tides –the periodic rise or fall of sea level due to
gravitational attraction between sun, moon
and earth
Neap Tide (1st & 3rd Quarter)
Centrifugal
force
(rotation of the
earth in its
axis)
Moon
Gravitational Pull
Spring Tide
Classifications:
Semi-diurnal –2 Low and 2 High
Diurnal –Single Low and Single High
Mixed –Semi-diurnal and single low/single
high
Spring tide (S –M –Ealigned)
Neap tides (S –M-E at45
o
angle)
Currents
Horizontal current –wind driven ( westernlies, easterlies, trade
winds) Caused by prevailing wind patterns
Deep Vertical Currents
C-slope, C-rise and abyssal plain (the result of salinity and
temperature gradient)
Air-mixture of different kinds of gases
Process;
First;Equator and at warmer latitudes, heated air
expands and rises
Later:
Low pressure area is produced and cooled air moves
Rising air is carried north or south of the equator and
eventually cools, contracts and sinks, creating a high
pressure area
Deflectionofairmasses:totherightinN.Hemisphere
andtotheleftinS.HemisphereduetoCorioliseffect
becauseofthespinningoftheplanet.
Easterly Tradewind
-produces the equatorial current
EQ Current : North –western B. current
Eastwind -Western Trade wind
Vertical Currents
Upwelling/Downwelling Caused by:
1. halocline/thermocline (salinity/density and
temperature grdient)
2. Offshore winds –push the surface and cause the
deep water to move to the surface.
Chemical Factors
Affect the: Occurrence of marine plants
Distribution
Abundance
Rep cycle –seasonal (die-off; dormant in
the production of sex cell/spore
Factors:
Pure water plus salt (Na, Cl, Mg ,Ca) increase,
correspondingly increase
1. osmotic pressure
2. boiling pt
3. density
4. conductance
Lower:
1. vapor pressure
2. freezing pt (solidify pure water)
SalinityRanges;
Oceanic –32-38 ppt
Neritic –25 –32 ppt
Estuarine –1-15-32 ppt
Hypersaline (Red Sea) –above 38 ppt
Seaweeds Classification
Euryhaline –30 to 40 ppt
Polyhaline –18 to 30 ppt
Mesohaline –3 to 18 ppt
Oligohaline -.5 to 3 ppt
Brackist -.5 to 5 ppt
Measurement of Salinity
1. Density –hydrometer –specific gravity
pycnometer –wt of salts
both consider standard temperature and pressure
2. Resistance to electrical current –conductivity meter
-salinometer
3. Bending of right from air to seawater –refractometer
4. Concentration of chlorine –chlorinity; titration with
AgN03 as major salt
Hydrometer –sp. Gravity x salt (k)
Pycnometer –weight of salts
Refractometer –measures the refraction index of
medium air to pure water = 1.3330
Conductivity Meter –amount of chlorine
Cl (ppt) = 0.7324 R15
R15= rate of electrical conductance of one sample to one
where;
Salinity = 35 ppt; 1 atms 15oC
Sal = .003 + (1.805 x chlorinity (20oC)
Lab: AgN03 + NACl –AgCl + NaN03
Dissolved Oxygen;
0.9% in water
21% in air
Sources: Air, Plants
Concentration:
Polar –(2x) –compared to tropical region
Lower temperature/salinity
Below photic zone = 0.2 to .3% (low)
Run-off = high O2
C02 in Seawater
Available either as:
C03
HC03
H2C03
H + removal (Acid) –negative effect
(Nutrients/elements are tied up until
Alkaline free)
Ion Concentration in Seawater
6.8–8.4 (normal reading)
pH –rises ; C02 is removed via photosynthesis
pH –lowered; C02 is added via respiration
Removal of C02
-Carbonate
-Bicarbonate
-Carbonic acid
Nutrients
2l –essential elements other trace elements
4 –elements for plant growth
-C, N, P, K, O
S -major component in protein synthesis
(300 mg/L (Si02) diatoms)
Macro Algae (Seaweeds)
1. Unicellular to filamentous -Chlorophyta
2. filamentous to thalloid -Phaecophyta
-Rhodophyta
Evolved –Pre-cambrian
Types of Meristem
1. apical meristem –division of apical cells
2. diffuse meristem –throughout the plant
3. intercallary meristem –specific growth regions
Growth Construction
1. filamentous –one to two rows of cells
(Cladophora)
2. foliose –flattened/membranous (Halymenia)
Cytology of Green Algae
I. Physiological Characteristics
1. chloro a and b
2. B –carotene
3. xanthophylls
-lutein
-zeaxanthin
-violaxanthin
-siphonin
-siphonoxanthin (play a role in acclimation in
deep water to the b-g spectrum
II. Cell Structure
-eukaryotic
-uninucleated (most)
-multi nucleated (few)
-coenocytic –multinucleated in a single cell
III. Chloroplast (thyllakoids)
-cup-shaped
-discoid
-reticulate
-laminate
Pyrenoids –amylase containing protein bodies
IV. Cell Wall
-cellulose microfibrils –typical in flowering
plants and Ulvalves
-highly crystalline siphonodadales (Cladophorales)
-polymers of xylan and mannan (Caulerpales)
-CaC03
V. Cell Division
a. Karyokinesis
-closed (intranuclear) –no break of n. membrane
-open (nuclear envelop disappears , e.g. like in
flowering plants)
b. Cytokinesis
-closed -spindle fibers parallel to cross
wall
-open –spindle fibers at right angle
Asexual spores –zoospores
Motile cells:
-Isokontae –pair of apically inserted flagella
of equal length that lack hairs
-Heterokontae –unequal length
Life History
Alternation of: Haploid (gametophytic)
Diploid (sporophytic)
Patterns
Haplontic –dominant phase is haploid with zygote
only as diploid
Fusion
zygote
1N 2N
gametes
Zygospore
Meiosis
2N
Zygospore
Diplontic Life History –diploid phase is dominant
Anteridia
Fusion
Oogonia 1N 2N
Meiosis
1N 2N
Haplodiplontic –dominant phases are haploid and
diploid
Fusion
Gametophytic 1N 2N
Sporophytic
Meiosis
Isomorphic
Chlorophyta
Taxonomy
Class (phyceae)
1. Chlorophyceae
2. Prasinophyceae
3. Charophyceae
Prasinophyceae Features :
1. unicellular, motile and appearing as green
2. cells with one or more layers of fibrillar scales
3. the flagella is always attached in groove covered with
scales and hairs
4. the flagellal roots with complex basal body
5. with single round-shaped chloroplast with pyrenoids
6. specialized ejectosome. e.g. Pyraminomas –pear-
shaped unicel with 4 flagella
Charophyceae –stone worts; ancient origin/evolution
Division:Chlorophyta
Class: Chlorophyceae
Chloroplast with pyrenoid
–multi-uninucleated
–haploid –haplodiplontic life history
–filamentous/caenocytic morphology
1. Order: Ulvales
Family: Percuriaceae -biserriate
Schizomeraceae -uniseriate
Prasiolaceae -filamentous/monostromatic
Monostromaceae -monostromatic
Ulvaceae -diastromatic and tubular
Family: Anadyomanaceae -filamentous but
fused to form blades
Anadyomene -brilliant green with
anastomosed filaments
3. Order Acrosiphonales
Family: Acrosiphonaceae
Genera: Urospora- unbranched filament
Spongopora- branched, uninucleated
Acrosiphonia- branched,
multinucleated
General Characteristics:
-single perforated chloroplast with hetero
–haplodiplontic life history
4. Order Siphonocladales
Family: Siphonocladaceae -filamentous
Family: Boodleaceae-net like blade with
anastomosing filaments
Family: Volaniaceae-aggregation of vesicle
Siphoclodales
Boodlea
Valonia
General Characteristics:
-segregated cell division
-they enlarge to form and equal or similar vesicle
e.g. velonia degagropila
dictyospharia caveriosa
5. Order Caulerpales–siphonous, coenocytic
Family: Bryopsidaceae
Genera: Broyopsis–hetero-haplo-diplontic life
history
Derbesia
Family Caulerpaceae–erect blades with rhizoid
-Trebeulae in growth of cell wall
-Leucoplast –without cross wall (coenocytic)
Genera: Caulerpa
Family Codiaceae–coenocytic with filament called
siphons
-surface cell is made of utricles
-diplontic, onisogametes
Family Udoteaceae –heavily certified to
Genera: Halimeda
Udotea
Penicillus
Chlorodesmis
Avrainvillea
6. Order Dassyclaudales
2 Family -Dasaycladaceae
Acetabulariaceae
Characteristics: whorl branching
Superficial calcification
Diplontic, isogametic (produced in cyst)
Genera: Dasycladea
Cymopolia
Acetabularia
Division: Phaeophyta(Brown Algae)
Class:Phaeophyceae
265 genera
1,500 –2,000 species
Construction
a. filamentous
b. massive intertidal growth
c. lithophytic –attached to stable substrate
d. epiphytic –living on surface of other plants
e. drift population (S. filamentous
(S. ratens
Uses:
-alginic acid (medicine, ice cream, shampoo)
-fodder (food of animal additives
-fertilizer
Cytology
-Chloro a & c
-B. carotene
fucoxanthin and neofucoxanthin –brownish, golden
brown, brown-green, greenish, yellow color
-Carotenoids
-Uninucleated
-Thallykoid in bonds of 3
-Reserved food
Motile Cells
-heterokontae (unequal flagellum –usually inserted)
a. acronomatic
-shorter
-smooth
-basally oriented
b. pleuronomatic
-long
-anteriorly nemated
-hairy
Life History
-diplontic
-gametes derived in sporangia
1. unilocular
2. plurilocular
Taxonomy
1. Ectocarpales
Ectocarpaceae
Ectocarpus
Characteristics:
-small, filamentous, multiseriated
4. Class Tiliopteridales
-filamentous construction
-uniseriate –multiseriate
-trichothallic growth
Genus: Halospora
5. Class Cutleriales
-amisogamete
-crustose morphology
-trichothallic
-alternation of isomorphic life history
6. Class Dictyotales
-pan tropical
-isomorphic –haplo-diplomatic
-parenchymatous construction
DIVISION PHAEOPHYTA
Characteristics:
-chloro a and c
-fucoxanthin (xanthophylls) predominate
-laminarin and oil are reserved foods
-haplo-diplomatic life history
asexual –fragmentation (vegetative)
sexual –isogametes
-products: alginate
Order Fucales
Blade morphology
-crustose –encrusted with lime
-duplicated –double margin
-cystic –enclosed reproductive structure
(antheridium –sperm)
(ooganium –egg)
2 years life cycle
1st year –vegetative growth
2nd year –reproductive age
Family Fucaceae
Genera: Hormophysa(triangular blade)
Sargassum duplication
S. crispifolium
S. polycystum
S. giganteifolium
Characteristics:
-predominantly floating (pneumatocyst)
-erect thallus with air bladder
-at the margin of littoral and sub-littoral zone
Genera: Turbinaria ornata(ornate leaf without
branching)
T. trialata(with branching)
Family Cystoseriaceae
Characteristics:
-triangular type of thallus
-seldom with air bladder
Genera: Hormophysatriquetra’
Cystoseira
Order Scytosiphonales
General Characteristics:
-hallow ball structure erupting at maturity
-morphology net-like to ball-like
-sexual reproduction only
-seasonal (summer)
Family Scytosiphonacea
Genera: Scytosiphon
Hydroclathus
Chnoosepora
Colpomenia
Order Dictyotales
General Characteristics
-divaricatebranching
-heavily calcified
-linear branching to flabellate
Family Dictyotaceae
Genus Dictyoty –linear branch, turcated, semi-permanent
Padina –flabellate blades, destructs lines of growth,
heavy calcification
Economic Importance
-source of alginate-medicinal property
-fertilizer -insecticidal property
-animal fodder
Laminariales
-large group of brown algae
-hetero morphic (unequal; sporophytic; gametophytic)
-developed:
rhizoid
stem
blade
RED ALGAE (RHODOPHYTA)
Characteristics
-intertidal to subtidal –chloro to phycoerythrin
change in color
-enkaryotic
-flagella lacking
-phycobillin (phycoerythrin
-reserved food (Floridean starch)
long chain of glucose to lipid
Cytology
-ChloroA packed in a thyllakoid
-Phycocyanin
r –phycocyanin
c –phycocyanin
-Carotenoids
B-carotene
L –carotene
-pyrenoid(starch grain) distinct
-phycocolloids
agar-(agarophytes)
carrageenan–( carrageenophyte)
funoran
fucellarian
-starch (Floridean)
Xylose
amylase
Life History
-triphasic(3 life stages)life history
1. gametophytic–produce gametes
2. carposphorophytic–produce carpaspore
3. tetrasporophytic–produce tetraspore
Other Spore Types (Asexual)
-monospore–derived monosporagia
-paraspore–derived parasporangia
-carpospore–derived carposporangia
Taxonomy
DIVISION –RHODOPHYTA
Class –Rhodophycidae
Sub class –Bangiophycidae
Floridiophycidae
Characteristics:
–uninucleatecells
–single stellatecentral plastids
–diffuse (intercellary) meristem
–absence of pit connection
–must have absent sexual reproduction
–except, parphyra, bangiaand polysiphonia
–simple venicellularin multicellulargroup
3 Orders
Parphyridiales
Campsogonales
Bangiales
a) Prephyridiales
–Unicellular-pseudofilamentous
–Colonial -no sexual reproduction
b)Comprogonales
–produce monosporeof unequal division
–Rep Groups:
-Erythrocladia–filamentous
-Erythrotrichia
c) Bangiales
monotype –monostroma
–diatromatic
–filamentous
Rep. Group
-Bangia
-Porphyra
Sub-class–Florideophycidae
occurrence of multinucleated cells
presence of pit plug
presence of several discoid chloroplast
apical cell division
multicellular(macroscopic)
sexual reproduction (gametophyticplant)
Order: Bangiales
Family: Bangiaceae
Genera: Porphyra
Bangia
Order: Palmariales
Genera: Rhodymenia
Classes:
Palmariales
-male gametophyeand tetrasporophytesare
microscopic
-female gametophyte is microscopic
-tetrasporophyteis parasite in female gametophyte
Genus:
Palmaria/Rhodymenia
Nemaliales
-heterotrichous–crest or postratethallus
Family: Helminthocladaceae
e.g.Liagora–heavily calcified
Helmithocladia–gelatinous
Gelidiales
-typical triphasiclife history
gametophytic
tetrasporophytic
-presence of nutritive cells (after
fertilization)
-agar sources
Genera: Gelidiella
Gelidium
Bonnemaisonales
Bonnemaisona-heteromorphic
gametophytic, tetrasporophyticgeneration
Asparagopsis–fee living filamentous;
tetrasporophytic
Cryptonemiales
-auxiliary cells on a vegetative branch
Genera:
-Cryptonemiales–heteromorphiclife
history w/ crustae
-Gloiosiphon–tetrasporicphase and
fleshy gametophyte
e.g. Halymenia,Grateloupia, Gloiosiphon
Corallinales
-with white cells
-reproduction structure in pits
conceptacle
-intercalary and apical meristem
Articulated species (non-calcified with genicula, joint
between segments)
e.g. Amphiroa
Non-articulated species
-lack geniculawhich are crustosewith erect non-
jointed branched
e.g. Lithothannion
Family: Solieriaceae
Genera: Soliera, Eucheuma
Family; Kappaphyceae
Characteristics:
-fission of cells that occur during fertilization
-some have filamentous medulla
Family: Gracilariaceae
-multiaxialconstruction w/ medullarylayer which is
parenchymatous
Genera: Gracilaria
Gigartina
Mastocarpus
Rhodymeniales
-multi axial growth and triphasislife history
(isomorphic)
-gametophyte with a procarp(arrangement of 3 to 4
cells carpogonialbranches adjacent 2 auxiliary cells
e.g. Genera:
Champia
Chrysonemia
Ceremiales
-filamentous, uniseriated
-carposporophytic stage is exposed
-multinucleated cell
-pit connection visible
3 Family (Dascyaceae, Rhodomelaceae, are provided with
trichoblast /colorless hair)
Genera: Laurencia
Hypnea
Acantophora
Dasya
Intertidal Communication Ties
Species Major Sub-divisionAlgal Groups
Ultra Enteromorpha supra littoral zonespecies w/ stand dessication
Prostate brown algae supra littoral fringe species w/ strong waves
Sargassum turbinaria mid littoral species w/ anchored
in deep
Substrate
Brown Algae sub littoral w/ stand variable
illumination
w/ stand wave action
w/ stand temperature
Factors
a. Tide
tidal amplitude (vertical range)
tidal frequency (diurnal, semi diurnal mixed)
b. Exposure of Algae
shore topography
wave action
time of dessication
c. Type of substrate
basic composition (material forming)
peeble
calcified rock
calcified rock
limestone rock
silt / mud
textures
smooth
rugged
d. Biological Interaction
-relationship among algae
1. Succession-involves seral
Bare -pioneer -succeeding
Species species
Bare -seagrass –Ulva–Sargrassum-Gracilacia
Stable
a.) Progressive –bare –climax
b) Reverse –climax -bare
Climax
Community
1
2
3
2. Competition
a.) Interspecies –between 2 different species
b.) Among a particular species
shading of Ulvaagainst Enteromorpha
Ulva shading Laurencia
Sargassumshading Ulva,
Enteromopha Caulaperpa
Species of Ulva-competing for
a limited space
Sargassumspecies competing
for light
3. Grazing
-feeding
-preferences (profifying) disappear
-less preferences
Micro algae Communities
Division –Cyanophyta
blue green (phycobillin)
nitrogen fixer (heterocyst)
Significance:
-food chain / food web (Iry producers)
absorb inorganic substances
-Nutrient recycling
Distribution
-epizoic, epiphytic
-endozoic, endophypic
-sessile (substrate attached)
Characteristics:
-cyanophycean starch
-chloro a and b (chlorophyta)
-some endolithic –within rocks
-oligotrophic
Cytology:
Cytoplasm of 2 types
-chromoplasm –periphery and
pigmentry
-centroplasm –center and usually pail
Accessory Pigments:
-Carotene
-Xanthophylls (myxoxanthin)
zeaxanthin
-Phycobillins
Arranged in a thyllakoid (phycobillisomes)
-Phycocyanin
-Phycoerythrin
-Allophycocyanin
-Gas vacuole –bounded by carboxysomes
-Reserved Food
-Starch
-Granules
-polyhedral
-polyglucan
Arranged in a
thyllakoid
(phycobillisomes)
Reproduction:
-fragmentation of filaments at
hormogonia
-occur where akinetsare located
Resting spore
-endospore –product of internal
division of cytoplasm
Resting spore
Taxonomy:
Cyanophyceae
Orders: Chamaesiphonales
(filamentous and endopore producing)
Chroococcales (unicellular
or colonial)
Oscillatoriales (filamentous)
Division: Prochlorophyta composed of 3
genera;
3 Genera
Prochloron
Prochlorotrix Chloro a and b
Prochlorococcus
Prochloron-intracellular, obligate
symbionts ; free living group
Prochlorotrix, Prochlorococcos-
filamentous; causes blooms in
lakes
Division Euglenophyta
-grass green motile unicells
-chloro a and b, B carotene
-xanthophyll (neoxanthin)
-astaxanthin (responsible for red color)
Taxonomy:
Class Euglenophyceae
Trophic Classification
-phageotrophic (particle absorbing,
particle ingesting)
-osmotrophic –absorption of organic
matter to photosynthesis
Orders:
Eutretiales
-photosynthetic
-flagella, unequal
-active, euglenoid movement
Euglenales
-photosynthetic, one emergent
flagella
-sessile (attached to substate)
-with lorica (in capsulized)
Heteronematales
-phageotrophic, particle colorless
and leaking photoreceptors;
flagellar swelling
Rhabdonematales
-osmotrophic type
Sphenomodales
-both (osmotrophic, phageotrophic)
Division Pyrrophyta (Dinoflagellates)
Trophic Forms:
-autotrophs –free living
-auxostrophic –need other accessory
elements (vitamins)
-heterotrophic –phageotrophic
-symbiotic –with zooxanthellae
Cytology:
-chloro a and b
-B carotene
-peridinine
-diadinoxanthin
-specialize cells
-trichocyst –rod of protein material
-nematocyst –ejectile organelle
-pusule –sac-like (function as
contractile vacuole)
-muciferous odies –mucilage bodies
that attach to the subatate
Eyespot
Forms:
1. mass of lipid globules
2. single layer of globules
3. double layer of globules
4. complex ocellus
Life History:
1. isogametes (sexual fusion)
onisogametes
2. haplontic life history
Taxonomy
Heterotrophic:
1. Ebriophyceae –colorless, naked
Parasitic naked cells
2. Ellobiophyceae
3. Syndimophyceae
4. Dinophyceae Group
a. Blastodiniales –parasitic
b. Dingamoebomeales –amoeboid
c. Dinoclomiales –filamentous
d. Gleodiniales –colonial
e. Pyrocystales –coccoid
Parasitic naked cells
Peridianiales
-motile
-armonia
-toxic
Cause of ciguatera –fish poisoning
e.g. Ceratium
Gonyaulax
Gymnodiales (common red tide forming
species)
e.g. Gymnodinium
Cause of ciguatera
–fish poisoning
Division:
Cryptophyta (Cryptomonels)
Characteristics:
-assymetrical (dorso-ventral flatter)
Top/ventral cross-section
-pleuronematic flagella, unequal
-ejectosomes at the reservoir
-single chloroplast
-one to many pyrenoids
-red, brown, olive, yellow –is due to
chlorophyll and phycobillin
-Nucleomorph –double membrane DNA
enclosed in ER