Physical Layer.pdf

1,281 views 196 slides Jun 28, 2023
Slide 1
Slide 1 of 196
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196

About This Presentation

Lecture note


Slide Content

by
Dr. S. SELVAGANESAN
Professor and HoD / IT
[email protected]
CS8591 Computer Networks
1
UNIT I
Introduction and
Physical Layer

CS8591 COMPUTER NETWORKS -Syllabus
2

CS8591 COMPUTER NETWORKS -Books
3

UNIT I
Introduction and Physical
Layer
Networks–NetworkTypes–Protocol
Layering–TCP/IPProtocolsuite–
OSIModel–PhysicalLayer:
Performance–Transmissionmedia–
Switching – Circuit-switched
Networks–PacketSwitching.
4

Data Communication
DataCommunicationisthe
exchangeofdatabetweentwo
devicesviasomeformof
transmissionmedium(suchasawire
cable).
5

Data Communication
Characteristics:
Effectivenessofadatacommunicationsystemdependson:
Delivery:Thesystemmustdeliverdatatothecorrect
destination.
Accuracy:Thesystemmustdeliverthedataaccurately
(withoutanychange/alteration).
Timeliness:Thesystemmustdeliverthedatainatimely
manner.Inthecaseofvideoandaudio,timelydelivery
meansdeliveringthedataastheyareproduced,inthesame
order,thattheyareproduced,andwithoutsignificantdelay.
Thiskindofdeliveryiscalledreal-timetransmission.
Jitter:Jitterreferstothevariationinthepacketarrivaltime.
Itistheunevendelayinthedeliveryofaudioorvideo
packets
6

Components of Data communication
Components
ADataCommunicationsystemhasfivecomponents.
Figure 1: Five Components of Data Communication System
7

ADataCommunicationsystemconsistsoffivecomponents.Theyare
1.Sender:Thesenderisadevicethatsendsthemessage.Itcanbea
computer,workstation,telephonehandset,videocamera,andsoon.
2.Receiver:Thereceiverisadevicethatreceivesthemessagesentbythe
sender.Itcanbeacomputer,workstation,telephonehandset,television,and
soon.
3.Message:Themessageistheinformationordatatobecommunicated.
(Text,number,images,audioandvideo)
4.Medium:Thetransmissionmediumisthephysicalpathbywhicha
messagetravelsfromsendertoreceiver.Someexamplesoftransmission
mediaincludetwisted-pairwire,coaxialcable,fiber-opticcable,andradio
waves.
5.Protocol:Aprotocolisasetofrulesthatgoverndatacommunications.It
representsanagreementbetweenthecommunicatingdevices.Withouta
protocol,twodevicesmaybeconnectedbutnotcommunicating,justasa
personspeakingFrenchcannotbeunderstoodbyapersonwhospeaksonly
Japanese.
Components of Data communication
8

CommunicationbetweentwodevicescanbeSimplex,
Half-duplex,andfull-duplex.
Figure 2: Data flow (Simplex, Half-duplex, and full-duplex)
Data Flow (Transmission mode)
9

Communicationbetweentwodevicescanbeofthreetypes:
1.Simplex:Thecommunicationisunidirectional.Onlyoneof
thetwostationsonalinkcantransmitandothercanonly
receive.
Keyboardsandtraditionalmonitorsareexamplesof
simplexdevices.Thekeyboardcanonlyintroduceinput;
themonitorcanonlyacceptoutput.Thesimplexmode
canusetheentirecapacityofthechanneltosenddatain
onedirection.
2.Half-duplex:Eachstationcanbothtransmitandreceive;but
notatthesametime.Theentirecapacityofthechannelis
takenbythestationwhichtransmitsthedata.
Inahalf-duplextransmission,theentirecapacityofa
channelistakenoverbywhicheverofthetwodevicesis
transmittingatthetime.Walkie-talkiesandCB
(CitizensBand)radiosarebothhalf-duplexsystems.
Data Flow
10

Communicationbetweentwodevicescanbeofthree
types:
3.Full-duplex:Bothstationscantransmitandreceivethe
dataatthesametime.Thecapacityofthechannelis
dividedbetweenthesignalstravelingintheopposite
direction.
Onecommonexampleoffull-duplexcommunicationisthe
telephonenetwork.Whentwopeoplearecommunicatingbya
telephoneline,bothcantalkandlistenatthesametime.The
full-duplexmodeisusedwhencommunicationinboth
directionsisrequiredallthetime.Thecapacityofthechannel,
however,mustbedividedbetweenthetwodirections
Data Flow
11

NETWORKS
Anetworkisasetofdevices(alsoreferredtoas
nodes)connectedbycommunicationlinks.
Anodecanbeacomputer,printeroranyother
devicecapableofsendingand/orreceivingdata
generatedbyothernodesonthenetwork.
12

Computer NETWORKS
AComputernetworkisagroupof
interconnectedcomputers.
WhyweneedNetworks?
Itallowscomputerstocommunicatewith
eachotherandtoshareresourcesand
information.
Thebestknowncomputernetworkisthe
Internet.
13

NETWORKS
DistributedProcessing
Mostnetworksusedistributedprocessingin
whichataskisdividedamongmultiple
computers.
Insteadofonesinglelargemachinebeing
responsibleforallaspectsofaprocess,separate
computers(usuallyapersonalcomputeror
workstation)handleasubset.
14

NETWORKS
NetworkCriteria
Anetworkmustbeabletomeetacertain
numberofcriteria.Themostimportantof
thesecriteriaare
Performance
Reliability
Security
15

NETWORKS
Performance
Performancecanbemeasuredinmanyways,
includingtransittimeandresponsetime.
Transittimeistheamountoftimerequiredfora
messagetotravelfromonedevicetoanother.
Responsetimeistheelapsedtimebetweenan
inquiryandaresponse.
Performanceofanetworkdependsonanumber
offactorsincludingnumberofusers,typeof
transmissionmedium,capabilitiesofconnected
hardware,andefficiencyofsoftware.
16

NETWORKS
Performance
Performanceisoftenevaluatedbytwo
networkingmetrics:throughputanddelay.
Weoftenneedmorethroughputandlessdelay.
However,thesetwocriteriaareoften
contradictory.
Ifwetrytosendmoredatatothenetwork,
wemayincreasethroughputbutweincrease
thedelaybecauseoftrafficcongestioninthe
network.
17

NETWORKS
Reliability
Inadditiontoaccuracyofdelivery,network
reliabilityismeasuredbythefrequencyof
failure,thetimeittakesalinktorecoverfrom
afailure,andthenetwork’srobustnessina
catastrophe.
Security
Networksecurityissuesincludeprotecting
datafromunauthorizedaccess,protectingdata
fromdamageand,developmentand
implementingpoliciesandproceduresfor
recoveryfrombreachesanddatalosses.
18

Physical Structures
Type of Connection
Beforediscussingnetworks,weneedtodefinesome
networkattributes.
DirectionofDataFlow
Anetworkisasetoftwoormoredevicesconnected
throughlinks.
ALinkisthephysicalcommunicationpathwaythat
transfersdatafromonedevicetoanother.
LineConfigurationreferstothewaytwoormore
communicationdevicesattachtoalink.
Twotypesofconnections(LineConfiguration):
1.Point-to-Point
2.Multipoint
19

Point-to-PointLineConfigurationprovidesadedicatedlink
betweentwodevices.Theentirecapacityofthechannelis
reservedfortransmissionbetweenthosetwodevices.
Mostpoint-to-pointlineconfigurationuseanactuallengthof
wireorcabletoconnectthetwoends,butotheroptions,suchas
microwaveorsatellitelinksarealsopossible.
Example:1.Point-to-Pointconnectionbetweenremotecontrol
andTelevisionforchangingthechannels(throughinfraredray)
2.Acomputerconnectedbyatelephoneline.
Figure 3: Point-to-Point Line Configuration
Physical Structures
Type of Connection
20

MultipointLineConfigurationisoneinwhichmorethantwo
specificdevicesshareasinglelink.
Inamultipointenvironment,thecapacityofthechannelis
shared,eitherspatiallyortemporally.
Ifseveraldevicescanusethelinksimultaneously,itisaspatiallyshared
lineconfiguration.(Example:internetcommunication,Telephony
communication.)
Ifusersmusttaketurns,itisatime-sharedlineconfiguration.
(temporally)
Figure 4: Multipoint Line Configuration
Physical Structures
Type of Connection
21

Topology:Thetermtopologyreferstothewayanetworkis
laidoutphysically.
Twoormoredevicesconnecttoalink;twoormorelinks
formatopology.
Thetopologyofanetworkisthegeometricrepresentationof
therelationshipofallthelinksandlinkingdevices(usually
callednodes)toeachother.
Fourbasictopologies:
1.Mesh
2.Star
3.Bus
4.Ring
(Inaddition,Hybrid)
Physical Structures
Physical Topology
22

MeshTopology:
Everydevicehasadedicatedpoint-to-pointlinktoeveryotherdevice.
In a mesh (topology) network with nnodes, there are
direct links;
number of I/O ports (for each device) required is (n-1).
Advantages:
1.Meshtopologyisrobust
2.Betterprivacyandsecurity
3.Failureofonelinkwillnotdisturb
otherlinks
4.Helpsthenetworkmanagertofind
thefaultlocationandsolution
Disadvantages:
1.LargeamountofcablingandI/O
portsarerequired.
2.Installationandreconnectionare
difficult.
Physical Structures
Physical Topology
Fig.5: A fully connected mesh topology
(five devices)
23

Exercise
Inamesh(topology)networkwithnnodes,thereare direct
links.
No.ofportsoneachdevice=(n-1)
Problem:
Assumefivedevicesarearrangedinamesh
topology.Howmanycablesareneeded?How
manyportsareneededforeachdevice?
Ans:
No.ofcables= = =10
No.ofportsforeachdevice=(n-1)=5-1
=4
24

StarTopology:
Everydevicehasadedicatedpoint-to-pointlinktoacentral
controller(HUB)only.
InaStartopologynetworkwithnnodes,therearedirectnlinks;
Advantages:
1.Startopologyisrobust.
2.Lessexpensive.
3.Faultidentificationandfault
isolationareeasy.
4.Modificationofstarnetwork
iseasy.
Disadvantages:
1.Ifthecentralhubfails,the
wholenetworkwillnotwork.
2.Communicationispossible
throughthehub.
Physical Structures
Physical Topology
Fig.6: A star topology connecting five stations
25

Hub
Physical Structures
Physical Topology
Fig.7: A star topology connecting four stations
26

BusTopology:
Onelongcableactsasabackbonetolinkallthedevicesinthe
network
Nodesareconnectedtothebackbonebytapsanddroplines.
Droplineisestablishingtheconnectionbetweenthedevicesandthe
cable.Thetapsareusedasconnectors.
Advantages:
1.EasyInstallation.
2.Lesscablingandlessnumber
ofI/Oportsisrequired.
3.Lesscost.
Disadvantages:
1.Networktrafficishigh.
2.Faultisolationandreconnectionis
difficult.
3.Addingnewdeviceisdifficult.
4.Abreakinthebuscablestopsall
transmissions
Physical Structures
Physical Topology
Fig.8: A bus
topology
connecting
three stations
27

RingTopology:
Eachdevicehasadedicatedpoint-to-pointlinkwithonlythetwo
devicesoneithersideofit.
Asignalistravellingalongaringinonlyonedirectionfromdevice
todeviceuntilitreachesitsdestination.
Therepeaterisusedtoregeneratethesignalsduringtransmission.
Advantages:
1.Easytoinstallandreconfigure.
2.Linkfailurecanbeeasilyfound
out.
Disadvantages:
1.Maximumlengthofringand
numberofdevicesarelimited.
2.Failureofonenodeonthering
affectstheentirenetwork.
3.Additionofnodesorremovalof
nodesdisruptsthenetwork.
4.Signaltrafficisunidirectional.
Physical Structures
Physical Topology
Fig. 9: A ring topology connecting six stations
28

RingTopology:
InaRingtopologynetworkwithnnodes,
therearedirectnlinks;
Physical Structures
Physical Topology
Fig. 9: A ring topology connecting six stations
29

HybridTopology:
Ahybridtopologyisatypeofnetworktopologythatusestwoor
moreothernetworktopologies,includingbustopology,mesh
topology,ringtopology,startopology,andtreetopology.
Physical Structures
Physical Topology
Fig.10: A hybrid topology: a star backbone with three bus networks
30

HybridTopology:
Physical Structures
Physical Topology
Fig.11: A hybrid topology: a star backbone with three bus networks
31

Types of Networks
CategoriesofNetwork
32

LAN, MAN, and WAN
CategoriesofNetwork
33

Fig 12: LAN
Local Area Networks (LAN)
34

Figure 13 An isolated LAN connecting 12 computers to a hub in a closet
35

Fig 14: MAN 36

Fig.15: MAN
37

Fig.16: WAN
38

Categories of Networks
39

Local Area Networks (LAN)
40

Alocalareanetwork(LAN)isusually
privatelyownedandlinksthedevicesina
singleoffice,building,orcampus.
Dependingontheneedsofanorganizationand
thetypeoftechnologyused,aLANcanbeas
simpleastwoPCsandaprinterinsomeone's
homeoffice;oritcanextendthroughouta
companyandincludeaudioandvideo
peripherals.
Currently,LANsizeislimitedtoafew
kilometers(upto10kms.)
Local Area Networks (LAN)
41

LANsaredesignedtoallowresourcestobe
sharedbetweenpersonalcomputersor
workstations.Theresourcestobesharedcan
includehardware(e.g.,aprinter),software
(e.g.,anapplicationprogram),ordata.
AcommonexampleofaLAN,foundinmany
businessenvironments,linksaworkgroupof
task-relatedcomputers,forexample,
engineeringworkstationsoraccountingPCs.
Local Area Networks (LAN)
42

AMetropolitanAreaNetwork(MAN)isanetworkwitha
sizebetweenaLANandaWAN.
Itnormallycoverstheareainsideatownoracity.(10km
–100km)
Itisdesignedforcustomerswhoneedahigh-speed
connectivity,normallytotheInternet,andhaveendpoints
spreadoveracityorpartofcity.
AgoodexampleofaMANisthepartofthetelephone
companynetworkthatcanprovideahigh-speedDSLline
tothecustomer.
AnotherexampleisthecableTVnetworkthatoriginally
wasdesignedforcableTV,buttodaycanalsobeusedfor
high-speeddataconnectiontotheInternet.
Metropolitan Area Networks (MAN)
43

Awideareanetwork(WAN)provideslong-distancetransmissionof
data,image,audio,andvideoinformationoverlargegeographic
areasthatmaycompriseacountry,acontinent,oreventhewhole
world.
AWANcanbeascomplexasthebackbonesthatconnectthe
Internetorassimpleasadial-uplinethatconnectsahomecomputer
totheInternet.
WenormallyrefertothefirstasaswitchedWANandtothesecond
asapoint-to-pointWAN(Figure17).
TheswitchedWANconnectstheendsystems,whichusually
comprisearouter(internetworkingconnectingdevice)thatconnects
toanotherLANorWAN.
Thepoint-to-pointWANisnormallyalineleasedfromatelephone
orcableTVproviderthatconnectsahomecomputerorasmall
LANtoanInternetserviceprovider(lSP).ThistypeofWANis
oftenusedtoprovideInternetaccess.
Wide Area Networks (WAN)
44

Figure 17 WANs: a switched WAN and a point-to-point WAN
45

Interconnection of Networks:
Internet
Today,itisveryraretoseeaLAN,aMAN,oraLANinisolation;theyare
connectedtooneanother.Whentwoormorenetworksareconnected,they
becomeaninternetwork,orinternet.
Asanexample,assumethatanorganizationhastwooffices,oneontheeast
coastandtheotheronthewestcoast.Theestablishedofficeonthewest
coasthasabustopologyLAN;thenewlyopenedofficeontheeastcoasthas
astartopologyLAN.Thepresidentofthecompanylivessomewhereinthe
middleandneedstohavecontroloverthecompanyfromherhome.
TocreateabackboneWANforconnectingthesethreeentities(twoLANs
andthepresident'scomputer),aswitchedWAN(operatedbyaservice
providersuchasatelecomcompany)hasbeenleased.ToconnecttheLANs
tothisswitchedWAN,however,threepoint-to-pointWANsarerequired.
Thesepoint-to-pointWANscanbeahigh-speedDSLlineofferedbya
telephonecompanyoracablemodernlineofferedbyacableTVprovideras
showninFigure1.12. 46

Figure 18 A heterogeneous network made of four WANs and two LANs47

The Internet
Anetworkisagroupofconnecteddevicessuchas
computersandprinters.
Aninternetistwoormorenetworksthatcan
communicatewitheachother.
ThemostnotableinternetiscalledtheInternet.
TheInternetisacollaborationofmorethan
hundredsofinterconnectednetworks.
48

The Internet
In1969,aprojectwasfundedbytheAdvancedResearch
ProjectAgency,anarmoftheU.S.Departmentof
Defense.
ARPAestablishedapacket-switchingnetwork,called
AdvancedResearchProjectAgencyNetwork
(ARPANET).
In1972,VintCerfandBobKahn,collaboratedonwhat
theycalledtheInternettingProject.
49

Figure 19 Hierarchical organization of the Internet
50

Protocols and Standards
Protocolissynonymouswithrule.
Standardsareagreeduponrules.
51

Protocols and Standards
Protocols
Aprotocolisasetofrulesthatgovernsdata
communications.
Aprotocoldefineswhatiscommunicated,howitis
communicated,andwhenitiscommunicated.
Theimportantelementsofaprotocolare:Syntax,
Semanticsandtiming.
Syntax:Itreferstothestructureorformatofthedata(the
orderinwhichtheyarepresented).
Semantics:Itreferstothemeaningforeachsectionof
bits,howthedataisgoingtobeinterpretedandtheaction
tobetakenbasedontheinterpretation.
Timing:Itindicateswhenthedatashouldbesentandhow
fastthedatacanbesent.
52

Standards
Defacto:Thestandardsthathavenotbeenapproved
byanorganizationbodybuthavebeenadoptedas
standardsthroughwidespreadusearecalledDe
factoStandard.
Dejure:Standardsthathavebeenapprovedbyan
organizedbody.
StandardsOrganization
InternationalOrganizationforStandardization(ISO),
InternationalTelecommunicationUnion-Telecommunication
StandardsSector(ITU-T),
AmericanNationalStandardsInstitute(ANSI),
InstituteofElectricalandElectronicsEngineers(IEEE),
ElectronicIndustriesAssociation(EIA)
Protocols and Standards
53

Building a Network
AComputerNetworkmustprovideageneral,cost
effective,fairandrobustconnectivityamongalarge
numberofcomputers.
Networksmustevolvetoaccommodatechangesinboth
underlyingtechnologiesuponwhichtheyarebasedas
wellaschangesinthedemandsplacedonthemby
applicationprograms.
Todealwiththiscomplexity,networkdesignershave
developedgeneralblueprintcalledNetwork
Architecture.

Building a Network
ANetworkArchitectureisdefinedaswhichidentifies
theavailablehardwareandsoftwarecomponentsand
showshowtheycanbearrangedtoformacomplete
network.
Tobuildanetwork,wemustknowthefollowing
things.
Discovertherequirementsthatdifferentapplicationsand
differentcommunitiesofpeopleplaceonthenetwork.
NetworkArchitectureonwhichtheapplicationsaregoingto
bedeveloped.
Keyelementsintheimplementationofcomputernetworks.
Identifyingkeymetricsthatareusedtoevaluatethe
performanceofcomputernetworks.

Building a Network
Networkingisaplanned,andongoingeffort.
Wesetgoals,developstrategiesforachievingthem,
takeaction,evaluatehowwellourplanisworking,and
makechangesasnecessary.
Howtobuildanetworkinfivesteps:
1.MakeaNetworkingPlan
2.Makecontact
3.Organizeournetwork
4.Takeaction;and
5.Practicenetworkingetiquette

Building a Network
Applications
Someapplicationsofthecomputernetworksare:
WorldWideWeb(WWW)
Email
Streamingaudioandvideo
Chatrooms
Music(file)sharing

Requirements
Requirements
Forbuildingacomputernetwork,wemustidentify
thesetofconstraintsandrequirementsthatinfluence
networkdesignandtheexpectationswehavefora
networkdependonourperspective:
AnApplicationProgrammerwouldlisttheservicesthat
theapplicationneeds.
ANetworkDesignerwouldlistthepropertiesofacost-
effectivedesign.
ANetworkProviderwouldlistthecharacteristicsofa
systemthatiseasytoadministerandmanage.

Layered Tasks
Weusetheconceptoflayersinourdailylife.
Asanexample,letusconsidertwofriendswho
communicatethroughpostalmail.
Theprocessofsendingalettertoafriendwould
becomplexiftherewerenoservicesavailablefrom
thepostoffice.
Figureshowsthestepsinthistask.

Figure -Tasks involved in sending a letter
Layered Tasks

Sender,Receiver,andCarrier
InFigure,wehaveasender,areceiver,andacarrierthattransportstheletter.Thereisa
hierarchyoftasks.
AttheSenderSite
Letusfirstdescribe,inorder,theactivitiesthattakeplaceatthesendersite.
oHigherlayer.Thesenderwritestheletter,insertstheletterinanenvelope,writes
thesenderandreceiveraddresses,anddropstheletterinamailbox.
oMiddlelayer.Theletterispickedupbyalettercarrieranddeliveredtothepost
office.
oLowerlayer.Theletterissortedatthepostoffice;acarriertransportstheletter.
OntheWay
Theletteristhenonitswaytotherecipient.Onthewaytotherecipient'slocalpost
office,thelettermayactuallygothroughacentraloffice.Inaddition,itmaybetrans
portedbytruck,train,airplane,boat,oracombinationofthese.
AttheReceiverSite
oLowerlayer.Thecarriertransportsthelettertothepostoffice.
oMiddlelayer.Theletterissortedanddeliveredtotherecipient'smailbox.
oHigherlayer.Thereceiverpicksuptheletter,openstheenvelope,andreadsit.
Layered Tasks

Layering and Protocols
Layeringisthetechniquefororganizingtheprotocolsintoan
orderedseriesofdistinctabstractions.
Theservicesprovidedbyalayerdependonlyontheservices
providedbythepreviouslessabstractlayer.
Thelayerimmediatelyabovethehardwaremightprovidehost-
to-hostconnectivity.
Thenextlayerupprovidesthesupportforprocess-to-process
channels.
Figure: Example of a layered network system

Layering and Protocols
Layeringprovidestwonicefeatures:
1.Itdecomposestheproblemofbuildinganetworkintomoremanageable
components.
2.Itprovidesamoremodulardesign.
Ifwewanttoaddanewservice,wehavetomodifythefunctionalityat
onelayer,reusingthefunctionsprovidedatallotherlayers.
Intheabovefigure,onechannelprovidesarequest/replyservice,and
anotherchannelprovidesamessagestreamservice.
Theabstractobjectsthatmakeupthelayersofanetworksystemare
calledprotocols.Thatis,aprotocolprovidesacommunicationservice
thathigher-levelobjectsusetoexchangemessages.
Figure: Layered systems with alternative abstractions

OSI Model
OpenSystemsInterconnection(OSI)Model
AnISOstandardthatcoversallaspectsofnetwork
communicationsistheOpenSystemsInterconnection(OSI)
model.
Itwasfirstintroducedinthelate1970s.
Anopensystemisamodelthatallowsanydifferentsystemsto
communicateregardlesstotheirunderlyingarchitecture.
ThepurposeofOSImodelistoopencommunicationsbetween
differentsystemswithoutrequiringchangestothelogicofthe
underlyinghardwareandsoftware.
TheOSImodelisnotaprotocol;itisamodelforunderstanding
anddesigninganetworkarchitecturethatisflexible,robust,and
interoperable.

OSI Model
OpenSystemsInterconnection(OSI)
TheOpenSystemsInterconnectionmodelisalayeredframeworkforthe
designofnetworksystemsthatallowsforcommunicationacrossalltypesof
computersystems.
Itconsistsforsevenseparatebutrelatedlayers,eachofwhichdefinesa
segmentoftheprocessofmovinginformationacrossanetwork.

OSI Model

OSI Model
ThefiguregivesanoverallviewoftheOSIlayers.
Figure –The Interaction between layers in the OSI model

Layered Architecture (OSI Model)
OpenSystemsInterconnection(OSI).
Figureshowsthelayersinvolvedwhenamessageissentfrom
deviceAtodeviceB.
AsthemessagetravelsfromAtoB,itmaypassthroughmany
intermediatenodes.
Theseintermediatenodesusuallyinvolveonlythefirstthree
layersoftheOSImodel
Eachlayercallsupontheservicesofthelayersjustbelowit.
Thisisdonewiththehelpofprotocols.
Theprocessesoneachmachinethatcommunicateatagiven
layerarecalledPeer-to-PeerProcesses.
Thepassingofdataandnetworkinformationbetweenthelayers
arecarriedoutwiththehelpofinterfaces.Interfaceisusedto
definetheinformationandservicestobeprovidedbyeachlayer.

Peer-to-Peer Process
Atthephysicallayer,communicationisdirect.
InFigure,deviceAsendsastreamofbitstodeviceB
(throughintermediatenodes).
Atthehigherlayers,however,communicationmustmove
downthroughthelayersondeviceA,overtodeviceB,and
thenbackupthroughthelayers.
Eachlayerinthesendingdeviceaddsitsowninformationto
themessageitreceivesfromthelayerjustaboveitandpasses
thewholepackagetothelayerjustbelowit.
Atlayer1,theentirepackageisconvertedtoaformthatcan
betransmittedtothereceivingdevice.
Atthereceivingmachine,themessageisunwrappedlayerby
layer,witheachprocessreceivingandremovingthedata
meantforit.

Thepassingofthedataandnetworkinformationdown
throughthelayersofthesendingdeviceandbackup
throughthelayersofthereceivingdeviceismadepossible
byaninterfacebetweeneachpairofadjacentlayers.
Eachinterfacedefinestheinformationandservicesalayer
mustprovideforthelayeraboveit.
Well-definedinterfacesandlayerfunctionsprovide
modularitytoanetwork.
Aslongasalayerprovidestheexpectedservicestothe
layeraboveit,thespecificimplementationofitsfunctions
canbemodifiedorreplacedwithoutrequiringchangesto
thesurroundinglayers.
Interfaces Between Layers

OSI Model
Thefiguregivesanoverallviewofthe
OSIlayers.
Figure –The Interaction between layers in the OSI
model
Thesevenlayersare
organizedintothree
subgroups.
#Layers1,2and3
(Physical,DataLinkand
Networklayers)are
NetworkSupportLayers.
#Layers5,6and7
(Session,Presentationand
Applicationlayers)are
UserSupportLayers.
#Layer4(TransportLayer)
linksthetwosubgroups
andensuresthatwhat
lower layershave
transmittedisinaformthat
theupperlayerscanuse.

OSI Model
NetworksupportLayerdealwiththephysicalaspectsofmoving
datafromonedevicetoanothersuchaselectricalspecifications,
physicalconnections,physicaladdressingandtransporttimingand
reliability.
UsersupportLayersallowinteroperabilityamongunrelated
softwaresystems.
TheupperOSIlayersarealwaysimplementedinsoftware.Lower
layersareacombinationofhardwareandsoftware,exceptforthe
physicallayer,whichismostlyhardware.

OSI Model
Figure –An Exchange using the OSI model

OSI Model
•Theprocessstartsattheapplicationlayer;
thenmovesfromlayertolayerin
descendingsequentialorder.
•Ateachlayer,aheader,canbeaddedtothe
dataunit.
•Thetrailerisaddedonlyatlayer2.
•Whentheformatteddataunitpasses
throughthephysicallayer,itischangedinto
anelectromagneticsignalandtransported
alongthephysicallink.
•Uponreachingitsdestination,thesignal
passesintophysicallayerandistransformed
backintodigitalform.
•Thedataunitsarethenmovedbackup
throughtheOSIlayers.
•Whentheblockofdatareachesthenext
higherlayer,theheadersandtrailersattached
bythesendinglayerareremoved.
•Whenthedataunitreachestheapplication
layer,themessageisagaininform
appropriatetotheapplicationandismade
availabletotherecipient.
Figure –An Exchange using the OSI model

Encapsulation
Figure2.3revealsanotheraspectofdatacommunicationsin
theOSImodel:encapsulation.
Apacket(headeranddata)atlevel7isencapsulatedina
packetatlevelwholepacketatlevel6isencapsulatedina
packetatlevel5,andsoon.
Inotherwords,thedataportionofapacketatlevelN-1
carriesthewhole(dataandheaderandmaybetrailer)from
levelN.Theconceptiscalledencapsulation;levelN-1isnot
awareofwhichpartoftheencapsulatedpacketisdataand
whichistheheaderortrailer.
ForlevelN-1,thewholepacketcomingfromlevelNasone
integralunit.

Layers in the OSI Model

Physical Layer
PhysicalLayer
Thephysicallayerisresponsibleformovementsofindividualbits
fromonehop(node)tothenext.
Thephysicallayercoordinatesthefunctionsrequiredtocarryabit
streamoveraphysicalmedium.
Itdealswiththemechanicalandelectricalspecificationsofthe
interfaceandthetransmissionmedium.

FunctionsofPhysicalLayer
1.PhysicalCharacteristicsofInterfacesandMedia:
•Itdefinestheelectricalandmechanicalcharacteristicsoftheinterfaceandthemedia.
•Itdefinesthetypesoftransmissionmedium.
2.RepresentationofBits
•Totransmitthestreamsofbitstheymustbeencodedintosignal.
•Itdefinesthetypeofencodingwhetherelectricaloroptical.
3.Datarate
•Itdefinesthetransmissionrate,i.e.,thenumberofbitssentpersecond.
4.SynchronizationofBits
•Thesenderandreceivermustbesynchronizedatbitlevel.
5.LineConfiguration
•Itdefinesthetypeofconnectionbetweenthedevices
•Twotypesofconnectionare:Point-to-Point;Multipoint
6.PhysicalTopology
•Thesenderandreceivermustbesynchronizedatbitlevel.
7.TransmissionMode
•Thephysicallayeralsodefinesthedirectionoftransmissionbetweentwodevices:
Simplex,Half-duplex,Full-duplex.
Physical Layer

2.79
The physical layer is responsible for movements of
individual bits from one hop (node) to the next.
Note

DataLinkLayer
Thedatalinklayerisresponsibleformovingframesfromonehop
(node)tothenext.
Data Link Layer

FunctionsofDataLinkLayer
1.Framing:Itdividesthestreamofbitsreceivedfromnetworklayerinto
manageabledataunitscalledframes.
2.PhysicalAddressing:Itaddsaheadertotheframetodefinethesender
andreceiveroftheframe.
3.FlowControl:Thedatalinklayerimposesaflowcontrolmechanismto
avoidoverwhelmingthereceiver.
4.ErrorControl
•Itaddsreliabilitybyaddingmechanismstodetectandretransmit
damagedorlostframes.
•Italsousesamechanismtorecognizeduplicateframesbyaddingthe
trailertotheendoftheframe
5.AccessControl
•Itdetermineswhichdevicehascontroloverthelinkatanygiven
timewhentwoormoredevicesareconnectedtothesamelink.
Data Link Layer

Sub-layersofDataLinkLayer
1.LogicalLinkControl(LLC)Layer
•TheLogicalLinkControl(LLC)layerisoneoftwosub-layers
thatmakeuptheDataLinkLayeroftheOSImodel.
•TheLogicalLinkControllayercontrolsframe
synchronization,flowcontrolanderrorchecking.
2.MediaAccessControl(MAC)Layer
•TheMediaAccessControlLayerisoneoftwosub-layersthat
makeuptheDataLinkLayeroftheOSImodel.
•TheMAClayerisresponsibleformovingdatapacketstoand
fromoneNetworkInterfaceCard(NIC)toanotheracrossa
sharedchannel.
Data Link Layer

The data link layer is responsible for moving
frames from one hop (node) to the next.
Note

2.84
Figure 2.7 Hop-to-hop delivery

Physical Addressing

Network Adapter

NetworkLayer
Thenetworklayerisresponsibleforthedeliveryofindividualpackets
fromsourcehosttothedestinationhost.
Network Layer

OtherresponsibilitiesofNetworkLayer
1.LogicalAddressing:Whenapacketpassesthenetwork
boundary,thenetworklayeraddsthelogicaladdressesof
thesenderandreceiver.
2.Routing:Whenindependentnetworksorlinksare
connectedtocreateinternetworks,theconnectingdevices
(calledroutersorswitches)routeorswitchthepacketsto
theirfinaldestination.
Network Layer

2.89
The network layer is responsible for the
delivery of individual packets from
the source host to the destination host.
Note

2.90
Figure 2.9 Source-to-destination delivery

TransportLayer
Thetransportlayerisresponsibleforthedeliveryofamessagefrom
oneprocesstoanother.
Transport Layer

Transport Layer
OtherresponsibilitiesofTransportLayer
1.Service-pointaddressing:Thetransportlayergetstheentire
messagetothecorrectprocessonthedestinationsystemsbyaddinga
typeofaddresscalledaservice-pointaddress(orportaddress).
2.Segmentationandreassembly:Amessageisdividedinto
transmittablesegments,witheachsegmentcontainingasequence
number.Thesenumbersareusedtoreassemblethemessageatthe
destinationandtoidentifyandreplacepacketsthatwerelostin
transmission.
3.ConnectionControl:Inaconnectionlessservice,eachsegmentis
treatedasindependentpacketandinconnectionorientedservice,
eachsegmentistreatedasdependentpacket.Afterallthedataare
transferred,theconnectionisterminated.
4.FlowControl:Flowcontrolisperformedfromendtoendratherthan
acrossasinglelink.
5.ErrorControl:Atthislayer,theerrorcontrolisperformedina
process-to-processratherthanacrossasinglelink.

2.94
The transport layer is responsible for the delivery
of a message from one process to another.
Note

2.95
Figure 2.11 Reliable process-to-process delivery of a message

Port Address

Port Address

Session Layer
SessionLayer

Session Layer
SpecificresponsibilitiesofSessionLayer
1.DialogControl:Thesessionlayerallowstwosystemsto
enterintoadialog.Itallowsthecommunicationbetween
twoprocessestotakeplaceineitherhalf-duplexorfull-
duplexmode.
2.Synchronization:Thesessionlayerallowsaprocesstoadd
checkpoints,orsynchronizationpoints,toastreamofdata.
•E.g.Ifasystemissendingafileof100pages,itisadvisableto
insertcheckpointsafterevery10pagestoensurethateach10-
pageunitisreceivedandacknowledgedindependently.Inthis
case,ifacrashhappensduringthetransmissionofpage23,the
onlypagesthatneedtoberesentaftersystemrecoveryare
pages21to30.

2.100
The session layer is responsible for dialog
control and synchronization.
Note

Presentation Layer
PresentationLayer
Thepresentationlayerisresponsiblefortranslation,compression,and
encryption.

Presentation Layer
SpecificresponsibilitiesofPresentationLayer
1.Translation:Presentationlayerisresponsibleforthe
interoperabilitybetweendifferentencodingmethods.
2.Encryption:Tocarrysensitiveinformation,asystemmust
beabletoensureprivacy.Encryptionmeansthatthesender
transformstheoriginalinformationtoanotherformandsend
theresultingmessageoutoverthenetwork.Decryption
reversestheoriginalprocesstotransformthemessageback
toitsoriginalform.
3.Compression:Datacompressionreducesthenumberofbits
containedintheinformation.Datacompressionisimportant
inthetransmissionofmultimediasuchastext,audioand
video.

2.103
The presentation layer is responsible for translation,
compression, and encryption.
Note

Application Layer
ApplicationLayer:isresponsibleforprovidingservicestothe
user.

Application Layer
SpecificservicesprovidedbyApplicationLayer:
1.NetworkVirtualTerminal:isasoftwareversionofa
physicalterminalanditallowsausertologontoaremote
host.
2.Filetransfer,access,andmanagement:Theapplication
allowsausertoaccessfilesinaremotehost,toretrievefiles
fromaremotecomputerforuseinthelocalcomputer,andto
manageorcontrolfilesinaremotecomputerlocally.
3.MailServices:Thisapplicationprovidesthebasisfore-mail
forwardingandstorage.
4.DirectoryServices:Thisapplicationprovidesdistributed
sourcesandaccessforglobalinformationaboutvarious
objectsandservices.

2.106
The application layer is responsible for
providing services to the user.
Note

OSI Models
Summary of Layers

Data Link Layer also adds a trailer
-Trailer contains additional information that
deals with error correction.

Internet Architecture
Internetarchitectureisameta-network,aconstantly
changingcollectionofthousandsofindividualnetworks
intercommunicatingwithacommonprotocol.
Internetarchitectureisdescribedinitsname,theshortform
of‘inter-networking’.
Thisarchitectureisbasedontheveryspecificationofthe
standardTCP/IPprotocol,designedtoconnectanytwo
networkswhichmaybeverydifferentininternalhardware,
softwareandtechnicaldesign.
Oncetwonetworksareinterconnected,communicationwith
TCP/IPisenabledend-to-end,sothatanynodeonthe
Internethastheabilitytocommunicatewithanyothernode
(onanywhere).TheInternetarchitectureisalsosometimes
calledtheTCP/IParchitecture.

TCP/IP Protocol Suite
TheTCP/IPprotocolsuitewasdevelopedpriortotheOSI
model.Therefore,thelayersintheTCP/IPprotocolsuitedo
notexactlymatchthoseintheOSImodel.
TheoriginalTCP/IPprotocolsuitewasdefinedashaving
fourlayers:host-to-network,internet,transport,and
application.
TheTCP/IPprotocolsuiteismadeoffivelayers:Physical,
Datalink,Network,Transport,andApplication.
Thefirstfourlayersprovidephysicalstandards,network
interfaces,internetworking,andtransportfunctionsthat
correspondtothefirstfourlayersoftheOSImodel.
ThethreetopmostlayersintheOSImodel,however,are
representedinTCP/IPbyasinglelayercalledthe
applicationlayer(seeFigure).

2.115
Figure 2.16 TCP/IP and OSI model

TCP/IP Protocol Suite
1.PhysicalandDataLinkLayers:
Atthephysicalanddatalinklayers,TCP/IPdoes
notdefineanyspecificprotocol.
Itsupportsallthestandardandproprietary
protocols.
AnetworkinaTCP/IPinternetworkcanbea
local-areanetworkorawide-areanetwork.

TCP/IP Protocol Suite
2.NetworkLayer:
Atthenetworklayer(or,moreaccurately,theinternetworklayer),
TCP/IPsupportstheInternetworkingProtocol.IP,inturn,usesfour
Supportingprotocols:ARP,RARP,ICMP,andIGMP.
a.InternetworkingProtocol(IP)
TheInternetworkingProtocol(IP)isthetransmission
mechanismusedbytheTCP/IPprotocols.TheIPlayerprovides
anunreliable,connectionlessdeliverysystem.Thereasonwhyit
isunreliableisthatIPprovidesnoerrorcheckingortracking.
b.AddressResolutionProtocol
TheAddressResolutionProtocol(ARP)isusedtoassociatea
logicaladdresswithaphysicaladdress.Onatypicalphysical
network,suchasaLAN,eachdeviceonalinkisidentifiedbya
physicalorstationaddress,usuallyimprintedonthenetwork
interfacecard(NIC).ARPisusedtofindthephysicaladdressofthe
nodewhenitsInternetaddressisknown.

TCP/IP Protocol Suite
2.NetworkLayer:(Contd)
c.ReverseAddressResolutionProtocol
TheReverseAddressResolutionProtocol(RARP)allowsa
hosttodiscoveritsInternetaddresswhenitknowsonlyits
physicaladdress.Itisusedwhenacomputerisconnectedtoa
networkforthefirsttimeorwhenadisklesscomputeris
booted.
d.InternetControlMessageProtocol
TheInternetControlMessageProtocol(ICMP)isamechanism
usedbyhostsandgatewaystosendnotificationofdatagram
problemsbacktothesender.ICMPsendsqueryanderror
reportingmessages.
e.InternetGroupMessageProtocol
TheInternetGroupMessageProtocol(IGMP)isusedto
facilitatethesimultaneoustransmissionofamessagetoa
groupofrecipients.

TCP/IP Protocol Suite
3.TransportLayer:
TraditionallythetransportlayerwasrepresentedinTCP/IPby
twoprotocols:TCPandUDP.
IPisahost-to-hostprotocol,meaningthatitcandeliverapacket
fromonephysicaldevicetoanother.
UDPandTCParetransportlevelprotocolsresponsiblefor
deliveryofamessagefromaprocess(runningprogram)to
anotherprocess.Anewtransportlayerprotocol,SCTP,hasbeen
devisedtomeettheneedsofsomenewerapplications.
a.UserDatagramProtocol
TheUserDatagramProtocol(UDP)isthesimplerofthetwo
standardTCP/IPtransportprotocols.
Itisaprocess-to-processprotocolthataddsonlyport
addresses,checksumerrorcontrol,andlengthinformationto
thedatafromtheupperlayer.

TCP/IP Protocol Suite
4.TransportLayer:(Contd)
b.TransmissionControlProtocol(TCP)
TheTransmissionControlProtocol(TCP)providesfulltransport-
layerservicestoapplications.
TCPisareliablestreamtransportprotocol.Thetermstream,in
thiscontext,meansconnection-oriented:Aconnectionmustbe
establishedbetweenbothendsofatransmissionbeforeeithercan
transmitdata.
Atthesendingendofeachtransmission,TCPdividesastreamof
dataintosmallerunitscalledsegments.Eachsegmentincludesa
sequencenumberforreorderingafterreceipt,togetherwithan
acknowledgmentnumberforthesegmentsreceived.Segments
arecarriedacrosstheinternetinsideofIPdatagrams.Atthe
receivingend,TCPcollectseachdatagramasitcomesinand
reordersthetransmissionbasedonsequencenumbers.

TCP/IP Protocol Suite
4.TransportLayer:(Contd)
c.StreamControlTransmissionProtocol(SCTP)
TheTransmissionControlProtocol(TCP)provides
fulltransport-layerservicestoapplications.Anew
transportlayerprotocol,SCTP,hasbeendevisedto
meettheneedsofsomenewerapplications.
TheStreamControlTransmissionProtocol(SCTP)
providessupportfornewerapplicationssuchasvoice
overtheInternet.Theapplicationsthatderivethe
mostbenefitfromtheuseofSCTPareinthevoice
andvideocommunicationsarea.
Itisatransportlayerprotocolthatcombinesthebest
featuresofUDPandTCP.

TCP/IP Protocol Suite
5.ApplicationLayer:
TheapplicationlayerinTCP/IPisequivalentto
thecombinedsession,presentationand
applicationlayersintheOSImodel.Many
protocolsaredefinedatthislayer.

ADDRESSING
Fourlevelsofaddressesareusedinaninternet
employingtheTCP/IPprotocols:physical,logical,port,
andspecific.
Figure:Addresses in TCP/IP

2.124
Figure: Relationshipof layers and addresses in TCP/IP

Physical Addressing

Network Adapter

Port Address

Port Address

TheInternet Assigned Numbers Authority(IANA) is responsible for the global
coordination of the DNS Root, IP addressing, and other Internet protocol resources.
The port numbers are divided into three ranges: thewell-known ports, theregistered
ports, and thedynamicorprivate ports.
The well-known ports (also known assystem ports) are those from 0 through 1023.
The requirements for new assignments in this range are stricter than for other
registrations,
[2]
examples include:
21:File Transfer Protocol(FTP)
22:Secure Shell(SSH)
23:Telnetremote login service
25:Simple Mail Transfer Protocol(SMTP)
53:Domain Name System(DNS) service
80:Hypertext Transfer Protocol(HTTP) used in theWorld Wide Web
110:Post Office Protocol(POP3)
119:Network News Transfer Protocol(NNTP)
123:Network Time Protocol(NTP)
143:Internet Message Access Protocol(IMAP)
161:Simple Network Management Protocol(SNMP)
194:Internet Relay Chat(IRC)
443:HTTP Secure(HTTPS)
The registered ports are those from 1024 through 49151. IANA maintains the official
list of well-known and registered ranges.The dynamic or private ports are those from
49152 through 65535. One common use for this range is forephemeral ports.

Specific Address

Performance
NetworkPerformanceMonitoring
Thegoalofnetworkperformancemonitoringtoolsistoprovidea
depictionofoperations,sopotentialproblemscanbeavoided,and
anomaliesthatoccurcanbedetected,isolatedandresolvedwitha
minimummean-time-to-repair.
BandwidthandLatency
Networkperformanceismeasuredintwofundamentalways:
Bandwidth
Latency(alsocalleddelay)
TheBandwidthofanetworkisgivenbythenumberofbitsthat
canbetransmittedoverthenetworkinacertainperiodoftime.
TheLatencyofanetworkisgivenbytime,takenbyamessage
totravelfromoneendofanetworktoother.

Performance
Throughputisameasureofhowfastwe
canactuallysenddatathroughanetwork.
Althoughbandwidthinbitspersecondand
throughputseemthesame,theyare
different.

Anetworkwithbandwidthof10Mbpscanpassonlyanaverageof12,000framesper
minutewitheachframecarryinganaverageof10,000bits.Whatisthethroughputof
thisnetwork?
Solution
Wecancalculatethethroughputas
Example 3.44
Thethroughputisalmostone-fifthofthebandwidthinthiscase.

Performance
TheLatencyordelaydefineshowlongittakesforanentiremessage
tocompletelyarriveatthedestinationfromthetimethefirstbitissent
outfromthesource.
Latencyismadeoffourcomponents:Propagationtime,
Transmissiontime,QueuingtimeandProcessingdelay.
Wecandefinethetotallatencyas
Latency=Propagation time + Transmission time + Queuing time + Processing delay
PropagationTime:measuresthetimerequiredforabittotravel
fromthesourcetothedestination.
Propagationtime=Distance/PropagationSpeed
Thepropagationspeedofelectromagneticsignalsdependsonthe
mediumandonthefrequencyofthesignal.
Lighttravelsat3×10
8
m/sinavacuum;2.3×10
8
m/sina
cable;2×10
8
m/sinafiber.

Whatisthepropagationtimeifthedistancebetweenthetwopointsis12,000km?
Assumethepropagationspeedtobe2.4×10
8
m/sincable.
Solution
Wecancalculatethepropagationtimeas
Example 3.45
TheexampleshowsthatabitcangoovertheAtlanticOceaninonly50msifthere
isadirectcablebetweenthesourceandthedestination.

Performance
TransmissionTime:
Transmission time= Message size / Bandwidth

Whatarethepropagationtimeandthetransmissiontimefora2.5-kbytemessage(an
e-mail)ifthebandwidthofthenetworkis1Gbps?Assumethatthedistancebetween
thesenderandthereceiveris12,000kmandthatlighttravelsat2.4×10
8
m/s.
Solution
Wecancalculatethepropagationandtransmissiontimeasshownonthenextslide:
Example 3.46
Propagation time = Distance / Propagation Speed
Transmission time = Message size / Bandwidth

Whatarethepropagationtimeandthetransmissiontimefora5-Mbytemessage
(animage)ifthebandwidthofthenetworkis1Mbps?Assumethatthedistance
betweenthesenderandthereceiveris12,000kmandthatlighttravelsat2.4×
10
8
m/s.
Solution
Wecancalculatethepropagationandtransmissiontimesasshownonthenext
slide.
Example 3.47

Notethatinthiscase,becausethemessageisverylongandthebandwidthisnot
veryhigh,thedominantfactoristhetransmissiontime,notthepropagationtime.
Thepropagationtimecanbeignored.
Example 3.47 (continued)

Queuing Time:

3.142
The bandwidth-delay product defines the
number of bits that can fill the link.
Note

3.143
Figure 3.33 Concept of bandwidth-delay product

Performance
Delay×BandwidthProduct
Itisusefultotalkabouttheproductofthesetwometrics,often
calledthedelay×bandwidthproduct.
Now,wewillthinkaboutachannelbetweenapairofprocesses
asahollowpipe,wherethelatencycorrespondstothelengthof
thepipeandthebandwidthgivesthediameterofthepipe,then
thedelay×bandwidthproductgivesthevolumeofthepipe–
themaximumnumberofbitsthatcouldbeintransmitthrough
thepipeatanygiveninstant.

Performance
Delay×BandwidthProduct
Forexample,atranscontinentalchannelwithone-waylatencyof
50msandabandwidthof45Mbpsisabletohold
=50×10
-3
sec×45×10
6
bits/sec
=2.25×10
6
bits
=275KBofdata

Figure Transmission medium and physical layer
•Transmission media are actually located below the physical layer
and are directly controlled by the physical layer.
•Figure shows the position of transmission media in relation to the
physical layer.
Transmission Media

Figure : Classes of transmission media
•Atransmissionmediumcanbebroadlydefinedasanything
thatcancarryinformationfromasourcetoadestination.
•Intelecommunications,transmissionmediacanbedividedinto
twobroadcategories:guidedandunguided.
•Guidedmediaincludetwisted-paircable,coaxialcable,and
fiber-opticcable.Unguidedmediumisfreespace.
Classes of Transmission Media

GUIDED MEDIA
Guidedmedia,whicharethosethatprovideaconduit
fromonedevicetoanother,includetwisted-paircable,
coaxialcable,andfiber-opticcable.
1.Twisted-Pair Cable
2.Coaxial Cable
3.Fiber-Optic Cable

Figure: Twisted-pair cable
1.Twisted-PairCable
Atwistedpairconsistsoftwoconductors(normally
copper),eachwithitsownplasticinsulation,twisted
together.
Oneofthewiresisusedtocarrysignalstothe
receiver,andtheotherisusedonlyasaground
reference.
Twisted-Pair Cable

Figure: UTP and STP cables
Unshielded Versus Shielded Twisted-Pair Cable
The most common twisted-pair cable used in communications is referred to as
unshielded twisted-pair (UTP).
IBM has also produced a version of twisted-pair cable for its use called shielded
twisted-pair (STP). STP cable has a metal foil or braided mesh covering that
encases each pair of insulated conductors. Although metal casing improves the
quality of cable by preventing the penetration of noise or crosstalk, it is bulkier
and more expensive.
Figure shows the difference between UTP and STP.
Twisted-Pair Cable

7.151
Table : Categories of unshielded twisted-pair cables

Figure UTP connector
Connectors
ThemostcommonUTPconnectorisRJ45(RJstandsforregisteredjack),asshownin
Figure.TheRJ45isakeyedconnector,meaningtheconnectorcanbeinsertedinonlyone
way.
Twisted-Pair Cable

Applications
1.Twisted-paircablesareusedintelephonelines.
2.TPusedintelephonenetwork.
3.InLAN,TPwiresaremainlyusedforlowcost,low
performanceapplications.
Twisted-Pair Cable

Figure: UTP performance

Figure Coaxial cable
Coaxial Cable
Coaxial cable (or coax) carries signals of higher frequency ranges than
those in twisted pair cable.
It has a central core conductor of solid or stranded wire (usually copper)
enclosed in an insulating sheath, which is, in turn, encased in an outer
conductor of metal foil, braid, or a combination of the two.
The outer conductor is also enclosed in an insulating sheath, and the
whole cable is protected by a plastic cover (see Figure)

Table: Categories of coaxial cables
Coaxial Cable

Figure BNC connectors
Coaxial Cable

Figure: Coaxial cable performance

Coaxial Cable

Fiber-optic Cable

Fiber-optic Cable

Fiber-optic Cable

Propagation modes
Figure: Modes
1.Single-mode fiber
Carries light pulses along single path.
2.Multimode fiber
Many pulses of light travel at different angles
Fiber-optic Cable

Inmultimodestep-indexfiber,thedensityofthecoreremainsconstantfrom
thecentertotheedges.Abeamoflightmovesthroughthisconstantdensity
inastraightlineuntilitreachestheinterfaceofthecoreandthecladding.At
theinterface,thereisanabruptchangeduetoalowerdensity;thisaltersthe
angleofthebeam'smotion.Thetermstepindexreferstothesuddennessof
thischange,whichcontributestothedistortionofthesignalasitpasses
throughthefiber.
Inmultimodegraded-indexfiber,decreasesthisdistortionofthesignal
throughthecable.Thewordindexherereferstotheindexofrefraction.As
wesawabove,theindexofrefractionisrelatedtodensity.Agraded-index
fiber,therefore,isonewithvaryingdensities.Densityishighestatthecenter
ofthecoreanddecreasesgraduallytoitslowestattheedge.Figure7.13
showstheimpactofthisvariabledensityonthepropagationoflightbeams.
Fiber-optic Cable

Applications: Fiber-optic cable is often found in backbone networks because its
wide bandwidth is cost-effective. Today, with wavelength-division multiplexing
(WDM), we can transfer data at a rate of 1600 Gbps.
Advantages Fiber-optic cable has several advantages over metallic cable
(twisted-pair or coaxial).
1. Higher bandwidth. 2. Less signal attenuation. 3. Immunity to
electromagnetic interference.
4.Resistance to corrosive materials. 5. Light weight. 6. Greater immunity
to tapping.
Disadvantages There are some disadvantages in the use of optical fiber.
1. Installation and maintenance. Fiber-optic cable is a relatively new technology.
Its installation and maintenance require expertise that is not yet available
everywhere.
2. Unidirectional light propagation. Propagation of light is unidirectional. If we
need bidirectional communication, two fibers are needed.
3.Cost. The cable and the interfaces are relatively more expensive than those of
other guided media. If the demand for bandwidth is not high, often the use of
optical fiber cannot be justified.
Fiber-optic Cable

Table : Fiber types

Figure: Fiber construction

Figure: Fiber-optic cable connectors

Figure: Optical fiber performance

UNGUIDED MEDIA: WIRELESS
Unguidedmediatransportelectromagneticwaves
withoutusingaphysicalconductor.Thistypeof
communicationisoftenreferredtoaswireless
communication.
Radio Waves
Microwaves
Infrared
Topics discussed in this section:

Figure: Electromagnetic spectrum for wireless communication
UNGUIDED MEDIA: WIRELESS
•Unguidedmediatransportelectromagneticwaveswithoutusingaphysical
conductor.Thistypeofcommunicationisoftenreferredtoaswireless
communication.
•Figureshowsthepartoftheelectromagneticspectrum,rangingfrom3kHzto900
THz,usedforwirelesscommunication.

1.Ground Propagation:
Radio waves travel through the lowest portion of the atmosphere, hugging the earth.
The low frequency signal follow the curvature of the planet.
Distance depends on the amount of the power.
Unguided signal can travel from the source to destination in several ways:
2.Sky Propagation:
Higher frequency radio radiate upward into the ionosphere where they arereflected back to
the earth.
Sky propagation allow for greater distance with lower power output.
3.line-of-sight Propagation:Very high frequency signals are transmitted in straight lines directly
from antenna to antenna.
Figure Propagation methods

Table: Bands

Figure: Wireless transmission waves

Radio Waves

Radio waves are used for multicast communications, such as radio and
television, and paging systems. They can penetrate through walls.
Highly regulated. Use omni directional antennas
Note
Radio Waves

Radio Waves

Microwaves

Microwaves

Microwaves are used for unicast communication such as cellular telephones,
satellite networks,
and wireless LANs.
Higher frequency ranges cannot penetrate walls.
Use directional antennas -point to point line of sight communications.
Note
Microwaves

Infrared

Infrared signals can be used for short-range communication in a closed area
using line-of-sight propagation.
Note
Infrared

Wireless Channels
Aresubjecttoalotmoreerrorsthanguided
mediachannels.
Interferenceisonecauseforerrors,canbe
circumventedwithhighSNR.
ThehighertheSNRthelesscapacityis
availablefortransmissionduetothe
broadcastnatureofthechannel.
Channelalsosubjecttofadingandno
coverageholes.

Switching
Connectivity
Wheneverwehavemultipledevices,wehavetheproblemofhowto
connectthemtomakeone-on-onecommunicationpossible.
Onesolutionistoinstallapoint-to-pointconnectionbetweeneachpair
ofdevices(meshtopology)orbetweenacentraldevice(hub)and
everyotherdevice(startopology).
However,thesemethodsareimpracticalandwastefulwhenappliedto
verylargenetworks.
Thenumberandlengthofthelinksrequiretoomuchinfrastructureto
becostefficient,andthemajorityofthoselinkswouldbeidlemostof
thetime.
InBustopology,thedistancesbetweendevicesandthetotalnumber
ofdevicesincreasebeyondthecapacitiesofthemediaandequipment.
Abettersolutionisswitching.

SwitchedNetwork
ASwitchednetworkconsistsofaseriesofinterlinkednodes,called
Switches.
Switchesaredevicescapableofcreatingtemporaryconnections
betweentwoormoredeviceslinkedtotheswitch.
Inaswitchednetwork,someofthesenodesareconnectedtothe
communicatingdevices(e.g.telephones).Othersareusedonlyfor
routing.
Switched Network

Switched Network
SwitchedNetwork
Longdistancetransmissionbetweendevicesistypically
doneoveranetworkofswitchingnodes.

Circuit Switched Network
Circuit-switchedNetwork
Circuitswitchingcreatesadirectphysicalconnectionbetweentwo
devicessuchasphonesorcomputers.
Acircuitswitchisadevicewithninputsandmoutputsthatcreatesa
temporaryconnectionbetweenaninputlinkandanoutputlink

Circuit Switched Network
AdvantagesofCircuitSwitching:
Thededicatedpath/circuitestablishedbetweensenderandreceiver
providesaguaranteeddatarate.
Oncethecircuitisestablished,dataistransmittedwithoutanydelayas
thereisnowaitingtimeateachswitch.
Sinceadedicatedcontinuoustransmissionpathisestablished,the
methodissuitableforlongcontinuoustransmission.
DisadvantagesofCircuitSwitching:
Astheconnectionisdedicateditcannotbeusedtotransmitanyother
dataevenifthechannelisfree.
Itisinefficientintermsofutilizationofsystemresources.Asresources
areallocatedfortheentiredurationofconnection,thesearenot
availabletootherconnections.
Dedicatedchannelsrequiremorebandwidth.
Priortoactualdatatransfer,thetimerequiredtoestablishaphysical
linkbetweenthetwostationsistoolong.

Packed Switched Network
PacketSwitching
Circuitswitchingwasdesignedforvoicecommunication.Inatelephone
conversation,forexample,onceacircuitisestablished,itremainsconnectedfor
thedurationofthesession.
1.Circuitswitchingislesswellsuitedtodataandothernon-voicetransmissions.
Non-voicetransmissionstendtobebursty;meaningthatdatacomeinspurt
withidlegapsbetweenthem.Whencircuit-switchedlinksareusedfordata
transmission,therefore,thelineisoftenidleanditsfacilitieswasted.
2.Asecondweaknessofcircuit-switchedconnectionsfordatatransmissionisinits
datarate.Acircuit-switchedlinkcreatestheequivalentofasinglecablebetween
twodevicesandtherebyassumeasingledatarateforbothdevices.
Thisassumptionlimitstheflexibilityandusefulnessofacircuit-switched
connectionfornetworksinterconnectingavarietyofdigitaldevices.
3.Third,circuitswitchingisinflexible.Onceacircuithasbeenestablished,that
circuitisthepathtakenbyallpartsofthetransmissionwhetheritremainsthe
mostefficient/availableornot.
Finally,circuitswitchingseesalltransmissionasequal.

Packet Switched Network
Packet-switchedNetwork
Whenacomputerattemptstosendafiletoanothercomputer,thefile
isbrokenintopacketssothatitcanbesentacrossthenetworkinthe
mostefficientway.

Packet Switched Network
ConnectionlessPacket-switchedNetwork
Eachpacketcontainscompleteaddressingorrouting
information(DestinationAddress,SourceAddress,Total
numberofpieces,Sequencenumber--writtenintheheader
sectionofpacket)

Packet Switched Network
Connection-orientedPacket-switchedNetwork
Datapacketsaresentsequentiallyoverapredefinedroute.(Fixedpath
betweenasourceanddestinationisestablishedpriortotransferofpackets.)
Packetsareassembled,givenasequencenumberandthentransportedover
thenetworktoadestinationinorder.
Inthismode,addressinformationisnotrequired.Thisisalsoknownas
virtualcircuitswitching.
The Process is
completed in 3 phases.
i.Connection
Establishment
Phase
ii.Data Transfer
Phase
iii.Connection
Release Phase

Packet Switched Network
AdvantagesofPacketSwitching:
EfficientuseofNetwork.
Easilygetaroundbrokenbitsorpackets.
CircuitSwitchingchargesuseronthedistanceanddurationofconnectionbut
PacketSwitchingchargesusersonlyonthebasisofdurationofconnectivity.
HighDataTransmissioninaPacketSwitchingisveryeasy.
AllthepacketsneednotfollowsamerouteinPacketSwitchingbutinCircuit
Switchingallthepacketsfollowsameroute.
PacketSwitchingusedigitalnetworkandenablesdigitaldatatobedirectly
transmittedtowarddestination.
DisadvantagesofPacketSwitching:
InPacketSwitchingPacketsarrivinginwrongorder.
TakesTransmissiondelay.
RequiresLargeamountRAM(RandomAccessMemory)tohandlelarge
amountofdatacommunicationinpackets.
SwitchingNodsrequiredmoreprocessionpowertoreconstructpackets
Packetsmaybelostontheirroute,sosequencenumbersarerequiredto
identifymissingpackets.

Message Switched Network
MessageswitchedNetwork
Messageswitchingisamethodinwhichthewhole
messageisstoredinaswitchandforwardedwhena
routeisavailable.

Message Switching
AdvantagesofMessageSwitching:
Efficienttrafficmanagement
Reducesnetworktrafficcongestion
Efficientuseoftransmissioncontrol
DisadvantagesofMessageSwitching:
Becauseofstoreandforward,transmissiondelay
Eachnoderequireslargecapacityforstoring.
Tags