Physical World and Measurement @irfanullah_mehar.pdf

irfanullah6695 0 views 138 slides Oct 08, 2025
Slide 1
Slide 1 of 138
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138

About This Presentation

Physical World and Measurement @irfanullah_mehar.pdf


Slide Content

Physics
<br>
Notes
<br>
IrfanullahMehar
<br>
V
[email protected]
<br>
o
@irfanullah_mehar
<br>
WorldofWisdom
<br>

5:52
AM
<br>
(Physies
toculdA
<br>
Topie-
<br>
OH (Units)
<br>
(Mass)
<br>
Phuysicaluanitiee
<br>
measmert
<br>
ge
(Erors)
<br>
(Dimenticns)
<br>
Physiealquth
<br>
Measwimenos))
Ecat
<br>
Osl06|202y
<br>
wedlnegday
<br>
Romance.
<br>

F
<br>
F
=
(GmMa
<br>
h=
<br>
mass
<br>
k
<br>
2roit9rmic)
<br>
nU
K
<br>
Uwversal
Gncuitatienal
<br>
lG.67XI671!
<br>
A
<br>
fia(Constantttueagit
<br>
Constaut
<br>
A
B1
<br>
Constamtr8
<br>
af
<br>
B
<br>

af
<br>
1
<br>
Pownd
<br>
U,
<br>
1
<br>
1000
<br>
453.
<br>
Poumd ym
<br>
A22
<br>
453.6
n
<br>
Okg=
212
pondo
<br>
Cressmuipy
<br>
KPound
<br>
001
<br>
8H081
<br>

1m
<br>
lm
<br>
m
<br>
(9
1
Fot
=
3048
Cm229r)
<br>
1&
<br>
Ans
<br>
Foot
<br>
m)
<br>
100cm
<br>
Cm
<br>
30.48
<br>
Arrge
<br>
cm
<br>
8.3
oot
<br>
the
<br>
crder
<br>
U
<br>
Singula
<br>
Fot
<br>
FPS
<br>
bellauing
<br>
mediun
<br>
1y1
Peund
1m
<br>
Plwal
<br>
brso
<br>
<anitsochagein
<br>
esy<c<emy
<
Faraday
<br>

1emu=
<br>
I
Fanada
<br>
1Fanadouy
<br>
esy>c
<br>
Cecy
<br>
emuc
<br>
M)
<br>
Faada>
<br>
Faadayemy
<br>
emy>Fahacae
<br>
Guantitiesphy.ntitre
<br>
boqghtaaohotlos273ibnap
<br>
Jstanhrstbalno
<br>

o7le6|202
y
<br>
Fridat
<br>
On
thebasiso
<br>
dependace
<br>
(oerived)itorete
<br>
onofe
<br>
Plusíca!
<br>
quantit'esg.
<br>
Onthebasiso
<br>
dimensns
<br>
Onthebasisun
<br>
(Enianiale)
<br>
Tuse
quatites
<br>
quantities
,
a
<br>
(aimenscnal)
<br>
(Dimengien
less)
<br>
(Tansor)
<br>
(oofinike
<br>
(lector)
<br>
o
lich
dohot
depeud
<br>
calledndaetal
<br>

TheseaNealso
ca
lledbaseor
<br>
uanttfes,o
<br>
Lerath
<br>
Massnu(OH)
<br>
boxTmesbhse2
<br>
Tnpete
<br>
tFndanenta!
Ouait'ea
<br>
Drdepead
<br>
6ELecticcwet
(ft.eiRT)oano
<br>
LuminousTidenáitynata)
<br>
Amoutotsubstance(yaj
ast
s)
<br>
aa2
(DeivedQuanities):
<br>
Ex-ti)l0
lspocd)
<br>
tii)T
(
Velscity)
<br>
istnee()
<br>
Tme(AM)
<br>
tazam/di
splacemat
<br>
Te
<br>

-a
aSRT(VahiableQuantities)
-
<br>
EX
<br>
Ex-)
<br>
Leugth,
<br>
Mass,1ine,istance,
<br>
Foe
etc.
<br>
Those
quautiti'esoese
<br>
constc
e
callea
<br>
(E)ii
<br>
iable
Quantitiee)
<br>
called
<br>
F
Úi)Colwmb's
Conatant
<br>
)PlaesContnt
<br>
valuesaie
<br>
hndnsac
GorauitaticnalConstaut
<br>
invaasle
quatitia
<br>
6.67
X1o"
Nm²/
<br>
lK)
<br>
(h)=
Ga63X16
<br>
e
<br>

Cvetcasyupud)
<br>
6)Mass
<br>
Time.
<br>
(2KmSafa
)
<br>
GR
<br>

f.
TT.(E.c)
<br>
eeee
<br>
Ö
ee
<br>
ee
<br>
e
fa
<br>
e-4a|
<br>

A
<br>
5km
<br>
(1)
<br>
(oistanee)x
<br>
(e1fa1)
<br>
3km
<br>
(ar
<br>
A(1)
<br>
faeT
<br>
oisplacenerd)
<br>
()
<br>
i)
rg(Donsty)=SHlr()
<br>
Š2d()
<br>
(Hfea)
<br>

7(ann)(x)
<br>
6i)raroj(Aceeleation)
=
<br>
X
-56lí)
<br>
C
<br>
0F.S
<br>
(A)
<br>
mx
<br>
(OyHln
X
<br>
(6)
<br>
()
<br>
)X()
<br>
()
<br>
()
<br>

(bns
<br>
(x) 34
<br>
Newten'Gravtttonal
<br>
s
<br>
(hio-atlaberatot
<br>
Vale
<br>
ofG)at
eanthis
cquadsto
ale
okGiat
<br>
moUn.
<br>
.Both
Cenm
<br>
lawis
<br>
Uiveaa4
<br>
UniversalGrauitational
Canslhit
<br>
Bothfhconectx
<br>

o8/062034
<br>
YHandnBiBadaShaukTha
Qaig-ezsah
<br>
S6
veinTaiane,JkaGialib
...
<br>
EkLehanneAisg DubaKiAbhitak
<br>
Longth
<br>
El
m
<br>
FPS
<br>
CCm)
<br>
M(mater
<br>
F
<br>
(frot)
<br>
Kinara
Namila."
<br>
Decma
<br>
Metrie
<br>
(Unit)eod
<br>
Mass
<br>
K
<br>
P
(Pound)|
<br>
Sat.
<br>
Time
<br>
Aitishyeten,
<br>
(Lägest
<br>
(Second)
<br>
(Second)
<br>
y1Na,/Smallestnit
<br>
S(secendJ)
<br>
wrnit)
<br>

mKs
<br>
1m
<br>
EX-
<br>
MehicSyctom
<br>
1k*
I000
m
<br>
mC
<br>
10
<br>
103
<br>
100cm
<br>
1m
10cm)
<br>
1xl0
X1o
2
<br>
NeostonO)
<br>
1N=10dnee
<br>
CGS
<br>

Ex.
<br>
>1X10x
o*x02
<br>
Jo
<br>
Kthi9)
<br>
|1J=
10erg
<br>
10X10
<br>
106
<br>
m
cm
<br>
10°X16`16
c
<br>
1gm
em
<br>
(ar)
<br>
C
GS
<br>
(
Contimekercube)
<br>
CGS
<br>

X
<br>

1
<br>
5
<br>
13
<br>
Radbn
<br>
|000
<br>
s600
<br>
3C
<br>
10
<br>
5
<br>
180
<br>
180
<br>
90
X
<br>
3
<br>
Radfan
<br>
-eL
<br>
180
<br>
X
<br>
Raciay
<br>
Dyee.
<br>

10
<br>
10
-l
(Hecta)
<br>
109
<br>
3a
(Decq)
<br>
(e
<br>
lo
-10
<br>
Syetem
<br>
(Fandhmetalwit)
<br>
(Tena)
<br>
162e
(Cendi)
<br>
466Rg
(miero)
<br>
16-9
<br>
1fm
<br>
bni
meto)
<br>
3horqgnol)
<br>
tenatfonal
Un
<br>
(Doivd
unt)
<br>
(Suplomtay
<br>

(FundamendalUnits)
<br>
tohiahdontoepnd
on
ctherwits
<br>
(Shdepeneaut
orlbasewnits
<br>
(ptanDnits,
o
fndametalquaudttes
<br>
Fundaimeta&ahtities
<br>
Timme
<br>
(ingth)
<br>
(massy
<br>
(a7)
<br>
(Tenptnatr)
<br>
Smatte
<br>
FundamentalUilk
<br>
Swbtnce1
<br>
Cm)
<br>
Second )
<br>
(Kalin)
<br>
(Luninus
Tntena
4po(cd)
<br>
mpoe(A)
<br>
(nole)
<br>
(mel)
<br>

Ex
<br>
madeap
ot
<br>
Speed
<br>
Aecelaratien
<br>
civ)
zia
<br>
Momentm
<br>
to
omore
4hantwoits
<br>
m
<br>
SXS
<br>
akin
<br>
S2Xss3
<br>
AWatt
<br>

(vii)g
Pressube)
=
<br>
f
<br>
(Avgularmamuntum)
=
<br>
Force
<br>
Area
<br>
Pascaluza
<br>
HINS SupplementogUnits)
<br>

Xn2
<br>
UnidsofAlgles-J
<br>
J-S
<br>

@r (staradian)
<br>
dA
<br>
2
<br>
[staa.)
<br>

vomeunbeingt
<br>
Mermories.ae
oluoaysspecial,
sometimes
<br>
dHsihe
Tcried,
ndsometier
<br>
0e
<br>
cybyremewsbeingthedays
<br>
he
<br>
ferms
<br>
Dimesicnal
eghisthe
<br>
hsthe
<br>
plgsicat
<br>
*Thet'sife
<br>
powerterms
<br>
/Diension
<br>
tundametal
<br>
(Ö)Force
=
moKg
<br>
we
<br>
called
<br>
làughby
<br>
epesentaten
<br>
inthepe
<br>
CQuantities.Thest
<br>
Dimenaicn
<br>
m
<br>

Lim)
<br>
A.XS
<br>
Sogoceeo'en
<br>
Magnet'egield
<br>
B
m
<br>
2-4
<br>
A-SA-3ys
<br>
[m
T
<br>
A
<br>
[TAT
<br>
A-S.
<br>
CmTc
<br>
2A
<br>

B=
<br>
r
<br>
AS
<br>
(vi)fagg
T
(Eecticfield)
<br>
S2
<br>
F
<br>
1
<br>
X
<br>
(Gravitathonalfeld)-
<br>
1
<br>
-
<br>
1
<br>
1
<br>
2X
<br>
A-s
<br>
a0Fore)
<br>
pole
<br>
|m'TA
<br>
m°L'T|
<br>
(A-m)
<br>
Pole
<br>

Rube
I
-
Tiosequautiteswhichhave
same
<br>
9013
<br>
units
,
coillalsO
<br>
(oidth)
<br>
(oistance)
<br>
faean
(Diaplacemud)
<br>
rDtnce)
<br>
t
<br>
t
<br>
houedSensons
<br>
(n)
<br>

E=
<br>
1919
<br>
lo
<br>
1
<br>
Note
i-
<br>
1
<br>
B
<br>
)i
m
<br>
B
<br>
14,4.ts()
<br>

rao(nccelenatien)
<br>
(gravitatienalocceleation)
<br>
(Entripetalaceleratn):
<br>
(Gvauitaionad
Aca)
<br>
I=
Fxt
xs
<br>
ziea(mementun)
<br>
S2
<br>
Xs
<br>
Gm
<br>
ml'727
<br>

(Streos)
<br>
LyfaeuT
<br>
F
<br>
Elaatieitcotficient
<br>
orXtKym2
<br>
V
<br>
8trese
<br>
staiy
<br>
ms2
<br>
S2
<br>

Arngla
<br>
ms
<br>
torque
<br>
mometum
<br>
Planc'sCnstant
<br>
mV.alt
<br>
23t
<br>
m
<br>
me/m/cv/L/mgh
<br>
T
<br>

Freqency
<br>
Velseitygrad'et
<br>
Jhc
<br>
RC
<br>
()mLT'
<br>
S
<br>
SXm
<br>
(
<br>
4
<br>
fanT
<br>

Ldw]
(b)
<br>
(o)
<br>
(9)
<br>

20k
<br>
(9)
<br>
(4)
<br>
t
n
<br>
(a)
LT2,T²
<br>
(b)
mLT mT^
<br>
(c)
<br>
F=at
tbt
<br>
ML
T,mLT-5
<br>
mLT
<br>

mT
c
<br>
mc-T
<br>
me
<br>
x
()G:N
<br>
X
<br>
1
<br>
nh
<br>
2
<br>
c=
A-S
<br>
-.mY
<br>
lonatant
<br>
T.s
<br>

2
<br>
Special
Edu.Depu
<br>
o18S.D
<br>
Ans
<br>
Ns
Xm2
<br>
[m''T
<br>
Q=1,ba1,T-2(
<br>
b-l,cr2
<br>

(d)KS=
<br>
ca)as,
<br>
Ji(na)
<br>
|moL'T-]
<br>

(2).
<br>
1uE
<br>
(3)
<br>
Lifeill
be.
<br>
Ay
<br>
tum
<br>
SathHo.
<br>
15
<br>

(b)
<br>
()
<br>
(a)
<br>
(5
<br>
Note:-Basic
<br>
Gyadient
<br>
Prasies
<br>

(a)STEa)oe
<br>
(6)
<br>
()
<br>
(4)&r
<br>
P
<br>
L
<br>
eP=
<br>
Are
<br>
A
<br>
S
<br>
S
<br>

(Ralatinednuty)
<br>
(a)|mLoT1eth
<br>
(b)
<br>
(a)
<br>
C
R
h
H:
<br>
Les
<br>
T
<br>

(22
<br>
ta)
<br>
(d)
<br>
enfa
<br>
ta)
<br>
C5)R
<br>
(Combinatena)
fori aH
<br>
RC
<br>
V,C
<br>
(a)CmLT]
<br>
anfastenfkg
<br>
(<)Lm²LTJ
<br>
)
<br>

CU2
<br>
E=km?
<br>
(a)[m2T23
<br>
(E)mLT)
<br>
(b)[mLT]
<br>
(2
<br>
cLRfong
<br>
(am)
<br>

:RCE
T
<br>
Gmg)
<br>
LeXRC
<br>
famme
<br>
A
<br>
(6)LT
<br>
(4)LI
<br>

23
<br>
(a)
LT
<br>
(b)Ta
<br>
(a)
<br>
()
<br>
An
lo
<br>
m
(9)|
<br>
n:(vatecity)
<br>
(faesag)
<br>

2
<br>
(a)
<br>
(b)
<br>
(9)
<br>
cb)
<br>
()
<br>
re
gfane ya:
<br>
(a)
<br>

Va)
LT3]and
<br>
Db)JmLT-3)and
<br>
A
ceord to
<br>
Tuesday
<br>
Rule
-
2
<br>
Unit
<br>
Phyzioal
<br>
andImLoT]
<br>
Rule:2]
<br>
Gratethen
<br>
nent
<br>
Ruleot
<br>
dimonsionokeettem
inany
<br>
Homgaity
<br>
Lessthan'
<br>
equal.
<br>
-Giatehag
equa
<br>

Ex.
<br>
1
<br>
Symbo)
<br>
2
<br>
a)àn)
<br>
Note:
<br>
Cos()
<br>
1
<br>
xs
m
<br>
NoteNewton
J
<br>
2
<br>
i
<br>
1
<br>
(1)Gatiat
<br>

B
<br>
,AB
<br>
(vi)
e
<br>
ix)SinAs)
<br>
(X)
<br>
A
<br>
Dteen
menatens
of
A
ag
<br>
(oim) ela) Ak=1A=B AT
BT
<br>
AXB=1
<br>
TIT
<br>
B
<br>
B
<br>

(b)
<br>
Q.93
<br>
PP
het
Grade
2013)
<br>
Ane
<br>
A-B
<br>
F:
<br>
FOat bt2
<br>
fanm'T1
Im1T
<br>
1
<br>
feT
<br>
Ans-
A
<br>
=b]
s
<br>

Q.
5
<br>
35
<br>
faT
<br>
36
<br>
T/m
<br>
tii)FJ=
[b+)
<br>
Ans
-
<br>
s
<br>
LmLT]
<br>
(b)
Mp)()
<br>

yst
Girade
<br>
A=Bc
<br>
n
<br>
asin
<br>
()=
asinvt
<br>
T
ol
<br>
bm
<br>
L(a)*=(
sin2t,os2t
<br>
Ca)(a,br) (5)
<br>

(9)4=
asin
<br>
(b)
<br>
m
<br>
m= =
1
<br>
m
<br>
T
<br>
S
<br>
sin)
<br>
n1)
<br>
asinvt)
<br>
S
<br>
(ant:)
<br>
=1=
<br>
)
<br>
-fameHS9(vt-1)
<br>
-[m1]
<br>

A
<br>
2It
<br>
T
<br>
+Cos
<br>
+
<br>
23t
<br>
25Tt
<br>
K
(yB)
=
RT
<br>
Unit
ags
<br>
Dimanaionleas
<br>

P+
<br>
1
<br>
PV-PB
+ -
<br>
AV
<br>
[A]=[Py
<br>
A]
<br>
2
<br>
AB
<br>
RT
<br>
TK
ms
<br>

Luky
<br>
(
<br>
SSXS
<br>

(Q.40
<br>
Solh
<br>
P=
<br>
Vt xs
<br>
mL'T
<br>
b
<br>
P
<br>
Pqt2
<br>
p.eo
,
X
<br>
b
<br>

Q.4)
F
(x/nra)tcsy
y
<br>
Sol
<br>
(4)mT]
<br>
(6)mLT-3
<br>
An
<br>
X
<br>
denit
<br>

Q.42
<br>
t
<br>
A
<br>
thetollsj
<br>
I-1
<br>
P
<br>
GivenAcos
(-qx
<br>
=
<br>
t-time,Xdictance,thenohieh
<br>
sttement
La
corecte
<br>
y=q
Cos
<br>
cos(1)
<br>
O1)n
<br>
ohee
<br>
2
<br>

pate
21)06|202y
<br>
Fsi
<br>
yER
<br>
(9)
x
<br>
le)x
fan
<br>
X
<br>
X=
<br>
t
<br>
qsin
e
bcose
<br>
209P
<br>
a
sne4bcose
<br>
a+b
<br>
q.1+b.1
<br>
Ansc)
<br>

Q.44
<br>
K=
<br>
BX
<br>
X24
<br>
(b)y
<br>
-afe
<br>
-IB)
=Kx
<br>
CTml
K
<br>
Opantmet
<br>
Xm
<br>
fomLm'L'
<br>
btc
<br>
(ES)T
<br>
An
<br>

(omenhoadAnalysisMežhod
)-
<br>
Ex–-faae) anaf561
TeJD
<br>
T(7)-
<br>
T
<br>
i
<br>
[mT]
m19+b
<br>

Note
<br>
-(
<br>
T
<br>
n
T
<br>
Lte-]b)
<br>
mene
=
<br>
Consta oimensionlessqkantitfes
Canl4
<br>
besbtaiuedoydientjonaAnalyis
<br>
by
<br>
methed,af
<br>

ollagLectuy
<br>
A
sin(st+kt)
<br>
(à)
<br>
(b)N=
N
e*p(-At)(i-fny-p
<br>
F my
<br>
d-o
<br>
Congtaunt
<br>
(FAT
<br>
()[fat
<br>

b2
<br>
b2-i=1
<br>
b
=1]
<br>
[mLT
<br>
-29-2b+C-2
<br>
-2(1)-2)4CEo
FAT2
<br>
-2,-2+c-2.
<br>
4
-2
<br>
FAT
<br>

cb)
<br>
1
<br>
(b)
<br>
[FV2a733
<br>
(OEVan
<br>
(Fy
<br>
Compair(dR)
<br>
(o
<br>
2tt
<br>

-22,=-1
<br>
2(0)-1
<br>
TTX2
2,-1
<br>
Rs(b)Fya
<br>
(c)
<br>
c4)
T
<br>
P
<br>
T
<br>
x+(-2]=)
<br>
Y=2t|=3
<br>

S
<br>
(Tap'rbec
<br>
atc=0
<br>
4t
<br>
Ta
<br>
bc
<br>
Tary'
<br>
S
<br>
34+b
<br>
-8)tb=6
<br>
()
<br>
Ang-().
To
<br>

(9).
<br>
asfundasental
<br>
(b).
<br>
(e)
<br>
Power(P),VelocitTie
<br>
IPv-T
<br>
)
<br>
La-1)
<br>
(aiF)ab
<br>
2b
<br>
Q9+b=
1
<br>
1uantitiea
,
then
<br>
neconci
derEd
<br>
Dinensiona
<br>
FV'
<br>
m
<br>
m
<br>
S
<br>
b
<br>
-2
<br>
-34-c
-2
<br>
-3-1)+<
<br>

e1tumneAndaaz-e-MuhabbtDekhaHa
<br>
PinzreKhol
<br>
Rule-|
<br>
Ans-(d)
<br>
NOTE
<br>
Andoaz-e-
oataNahinGalib.
<br>
(Excephian)
<br>
bhiDotoKuchhPazinle
<br>
Thesequantitisoch
donthaneuni
ts
<br>
oillcalled
bimens)nless
<br>
JoyaNahi
Karcte."
<br>
-wnitlesquctiies
a
<br>
ae
dienSicyless.
<br>
APlareAleTay
<br>
(H13)
<br>
Unit
<br>

(Rtracthve
Index)
<br>
(im)
<br>
(Relativedenaity)
<br>
(FricicnConatut
<br>
civsfapfa(shaiu)
<br>
Q.51)
<br>
2ndGrsade2023
<br>
Sclidange
uantity
<br>
(c)
<br>
(Sonskrit
Depatment):
<br>
(4)
BothwitT&
dmenten
<br>
(19Dimnsinbt
<br>
Ca)ptQ
<br>
ohichhasi
<br>
L
<br>
noynt
<br>
42ndGrade201
Ccewtorde):
<br>
diension
<br>
Jmenion.
<br>
1
<br>
>1
<br>
1
<br>

Q.53
<br>
(b)Lms
T-2]
<br>
C4)TmLTJ
<br>
(d)
<br>
tane
<br>
aNwttol)
<br>

.53
<br>
(4)
<br>
(5)LmT)
<br>
(c)mTJ
<br>
(d))mLT1]
<br>
ls)
<br>
[mL'
<br>
Cc)
Cm3dt
<br>
m²xm
<br>
hk
<br>
Kam2
<br>
ImlLTJ
<br>
An
<br>
(ns-9
<br>

Q.
54)
<br>
K=
<br>
1stGrede
<br>
(6)
m T
<br>
K X
9
<br>
[me
<br>
(
<br>
(P)
<br>
Q.55]K
fellauwingfomadadecibea
velatio,
<br>
bw
preswedstancethey
<br>

(6)lm°LT
<br>
tc)meLeT°)
<br>
(4)Lm°L'T
<br>
P
<br>
KO
<br>
X
<br>
P=
<br>

.
56
<br>
(G)
<br>
(5)
<br>
lc)
<br>
(d)
<br>
G7
<br>
Gmjma.
<br>
G
F2
<br>
m
<br>
Lgennlg
(Ea)
<br>
X
<br>
n
<br>
X
<br>
X
<br>
3
<br>
Ans
<br>
m
<br>

Q.5+
<br>
(a)O1N
<br>
F=
mna
<br>
F
<br>
F
"
<br>
F
tem
<br>
F
0m)
(10em)
<br>
10X10
<br>
(o1)>
<br>
)00
<br>
0.1
=
16
<br>
(b)JN
<br>
(D.1s)
stierRa3l
<br>
mcm
<br>
101
x
1oN
<br>
16
N
<br>
S2
<br>
O1N
<br>
2
<br>
O.1SeceYd
<br>
-2
<br>
29o
<br>
N
<br>

(1)
<br>
obsered(meoswed)
Vaue,
<br>
auesthromprachoal
<br>
qctual
<br>
ErYy
rehuaVale
meegiosecvolue
<br>
(meanvalweActualvaue)
<br>
X
Di
<br>
Qm
<br>
Ds
12:4426
2.20rxoo.6
<br>
5
<br>
Cledldos
hl
<br>

tà e(AbsoluteETOr)
<br>
fasefafan
<br>
25
<br>
O.5- 22
<br>
2.4sQ1.
<br>
1-0.1|[O1
<br>

l3)
<br>
(Absolcte
myeoun
Em)
<br>
Relate,Ex
<br>
(s)Bir
(Peecentgeero):
<br>
m
<br>

25
Jwy2024
<br>
Late
<br>
NiahtStudiesAreBetteithan,
<br>
m=
<br>
lateNiut
Replia!!
<br>
---
<br>
n
<br>
+an
<br>
Tueada
<br>
h
thentiht
<br>

Ex.
=
<br>
Meanalu
<br>
X=
<br>
alzafaa
<br>
Those
couses
<br>
5T
O.25)
<br>
(Systbomaticenors)
<br>
(5+
0.25)
<br>
0.25
<br>
X16D
<br>
5
t
<br>
rekhy
<br>
(Instrumetos)
<br>
Mean
n
bsolute
<br>
Environmeudaterx)
<br>
25
5%
<br>
eTS
<br>
toieh
can
beYeducedkese
consee
<br>
-
XO0=
<br>
(Randem )
<br>
stn
<br>
(GrossEnor)
<br>
ahenothowy
<br>
shehcantberedceo
<br>

(Combination
o
eors)
:
<br>
X=
<br>
AtAA
<br>
Y=
Bt
AB
<br>
)
<br>
(Y+Y)
=
<br>
(A+B)+.(AAt
B)
<br>
(coaOkol
<br>
AAtAB
<br>
-X100
<br>
cybr(8nbetraction)
<br>
(-Y)(-8)lAAAH)-A
<br>
AA-NB
<br>
x100
<br>

58
<br>
2ndGrade2018(specl)
<br>
-Gu,e3s
o
ato.02)
cmto(4t
oo)
<br>
Cm
<br>
(4+0.64)
<br>
7.AlAA
+
A8)
<br>
Al
<br>
(4-2)
<br>
A-B
<br>
2+ 06
<br>
X100
<br>
6
<br>

Q.53
<br>
la)0.34to.60cm
<br>
A
<br>
5
<br>
hoi9t
o6|cm
<br>
Cd).g4to.005Cm
<br>
(4.19-3.25)l0-01t
O-01)
<br>
0.94
o.02
<br>
examineralees
<br>
Ans
<br>
.rorthen

<br>
200
<br>
94
<br>
25]06|202y
<br>
(2.127.)
<br>

DO)y
2024
<br>
R
(lbt0.2kS2|g
<br>
Ri620.2
<br>
combhatien
<br>
Req.-
RitRe
(evies
combihatfon)
<br>
Ra
<br>
Req,-
6tlo)t
(0-2t
O.3)
<br>
16
<br>
eqwwalentsistauce
<br>
50
<br>
8ts10]. (Tinéperiod)
<br>
25
<br>
=
312.5%
<br>
HYMOg(Simplependnn)
<br>
2.63s,2.56,
<br>
(b)l611s)(y
0-01
c
(d)1.0
<br>
.C)a5nie (nlenAbsouteEmo)
<br>

JAay)
<br>
|sas]
<br>
2.63
+2:56+2.4
2
2.71220
<br>
262uSecno
<br>
|2.62-2-63
]
O
o1
<br>
2-62-
2-5G
<br>
5
<br>
|262-
2
<br>
l262-242
0
.20
<br>
|2.62-
2.80]
<br>
o.l0Second
<br>
-06
<br>
-009
<br>
O.18
<br>
13.12
<br>
-0.54
<br>
O.11seci
<br>
AAng (b).J1lsecen
<br>

Thene
<br>
2-624
<br>
he
many
<br>
Thosewho
<br>
X=AtAA
<br>
AB
<br>
Am
<br>
Cmore
<br>
S
bothenaslouldNot.
besoprUMd,
<br>
Ae
<br>
XY=ABtAABt
AABtAHÀB
<br>
4192ir
<br>
262|1
D
<br>
SB
<br>
2.62
<br>
Eras.to
comeA
<br>
AB
<br>
AAB
<br>
<<<<<<osAÐAB
<br>

X=A±AA
<br>
Y
8
±AB
<br>
Ne:
<br>
Y.X
<br>
3
(Divisien)
<br>
XA"
<br>
A
<br>
A
<br>
m
<br>
A
<br>
(5)Šle
(Powe)
<br>
AB
<br>
a)+(
<br>
8
(43)
<br>
B
<br>

Note!-Sumy
<br>
S.G202i
<br>
Q.G
<br>
AtB
<br>
Ca)
A
<br>
AA+AB
<br>
A-B
<br>
ODx
<br>
(b)B
<br>
.A+7.B
<br>
A
<br>
7A+/.8
<br>
B)
<br>

Q.63
<br>
(a)aatbAtc
<br>
(c)
<br>
ffarey
R
<br>
L10 .2
<br>
V=()60t5)Volt
<br>
I(10to.2)A
<br>
(b)
a
tb-cy
<br>
Ans-
9
<br>
Lc)5.0(d)Y.
<br>

Q.651
<br>
R
<br>
Q.66
<br>
(sx0) )
<br>
Conatant
<br>
(b)3.
<br>
ydtp ()
<br>
3X2
<br>
(Ans-
b
<br>
(947.(dJ
Y.
<br>
(e)
5/
<br>

T
2JI
<br>
T
4
<br>
dncc)S)>m
<br>
V
<br>
(b)5
y.
<br>
Y,
m
3,
<br>
.Lt27.T
<br>
as2,
<br>
1+2
(2-)
<br>
(2)
<br>
Ans-(e)
57,
<br>
|5|
<br>
2y,)
<br>
(c)92.d)3).
<br>

3+3l)
<br>
A
<br>
6.G]5faaA,-RJ0r
(obserakles)
<br>
A+
<br>
q?b3
<br>
Corit
<br>
q2b3
<br>
TS
<br>
(b)77.lc)147ld)
16
%
<br>
2+9+2+1
<br>
prelaa)
<br>
Ans-(c)(4%
<br>

-
<br>
2nd
G.
D023
<br>
Q.70
<br>
G0
<br>
202
<br>
LB)
5(c)
7
(d)1
<br>
2
<br>
Kintie
Ehegg(KE)
=
mr?
<br>
%m37.
(3hhl)
<br>
.
RE7
m
+2%v
<br>
O.002.|CmdTn
<br>
(9)
<br>
CA)
2(8)4cc)
2:4
<br>
)(0:3t
0:003
<br>
CD)3
<br>
69
6.002
<br>
O.2.
<br>
X100
<br>
(Ans-c
<br>
04220
<br>
2
<br>
2
<br>

m
O3t6O0
3
<br>
S.G.
2818
<br>
(Sanikrit)
<br>
O
003
<br>
7.
=7.m+r+
<br>
CA)|2Y.B)
6
<br>
S=
<br>
S-TYL)
<br>
2
<br>
m
<br>
7782L
<br>
V
<br>
47.
<br>
wfdthrif)(2tor02]m
<br>
V
Ans
<br>

Q.72
<br>
(A)oy.(2)2-7.
<br>
|2)d9
<br>
Vr
<br>
2).
<br>
(A)2
<br>
V
ar3
<br>
(c)GCd)
Y,
<br>
-(67.
<br>
2
te)
<br>

2615
<br>
Q.
<br>
Al30
6.5)

(20}o5)
<br>
AL
(30-20)(6•5to.5)
<br>
Al=10t1
<br>
O.
-5
1 re
R
(616.3)k2
<br>
(9)5.125
<br>
CPovnallel)Conbihate
<br>
(6)27.
<br>
RRo
<br>
()
<br>
(c)10:125).()
.
<br>

(6)
<br>
RitR
<br>
v.R,tR2)-
<br>
16o.5
<br>
0.5
<br>
16
<br>
5
+
3.125
<br>
b
<br>
Ans-(c)i0125
<br>
-x1
0%.X
<br>
Accordingo
<br>
b
<br>
3125Y.
<br>
b
<br>

(b)
<br>
(c)
2
<br>
13
<br>
Aneb
<br>

l9)11.
<br>
200
<br>
(b)
47.lc)
.
(d)
9
<br>
()7
fSr )
<br>
600
<br>
|52i0.2
<br>
(Ans
<br>
17.
<br>
(a)27.(b)37.Cc)67.cd'
57.
<br>
5.
<br>
52
<br>

s0.
<br>
(4)27.
(b)
4(c)72.
<br>
$17.|
<br>
x h00
<br>
(a)4c
<br>
6K)
<br>
Ans
<br>
Ans-b
<br>

1)
<br>
Ue
e
<br>
(signiicaudfigues)
<br>
phyeal
quaunhtyanethosedits
for
owch
<br>
completely
congident,
<br>
aill
be
mereaccwate
<br>
Ex>
<br>
Q32&,
<br>
23|3
<br>
45694
<br>
-S.F.
<br>
203
<br>
203.20|
<br>
2020
1
<br>
thits
<br>
30e6]2ay
<br>
S.F
<br>

Zroatlettside
oh
fset
non
<br>
oh
fsst
non
2ers-Ns.F.
<br>
(5)
<br>
:O2002
<br>
O.06202
<br>
Ex2.06
<br>
atiot
sideofslast
nen
<br>
2,600
5
<br>
Do.
D
5
<br>
Expunenhltems
<br>
2.02
163
<br>
Nendeiimal
no,
<br>
NS.F
<br>
200~1
<br>
20000–1
<br>

(*)
<br>
(2)5
<br>
5
<br>
LessthAM
5
<br>
B
2132
<br>
Ex=)
<br>
More
then
5
<br>
2-491
<br>
2J
<br>
+1
<br>
Ex,)2.285O
<br>
735
<br>
2.32G
<br>
ea
uals
to5
x
ascendgJit
ishsh
z
<br>
23251
<br>
2.24
<br>
léscendigdisitUnchangu
<br>
2:74
<br>
2.13
<br>
descendgdyit
<br>
2-33
<br>
275
<br>
(evee
<br>
E
22250=2.22
<br>
2745
274
<br>

Excnples
<br>
2.27S
23
<br>
2:4
0
5|
<br>
2.40250
<br>
40350
<br>
2:4
<br>
241
<br>
so]asy
<br>
Btenrel.
<br>

(Operahenainthevieoh
aiyifiantna)
<br>
AdditienSubetraction-
<br>
Decnal
hum
b
isvesultofadditon
or
<br>
Subsractien
wsillbeequele
tonin'mun
<br>
decimal
numberin
those.
<br>
2.2
<br>
12.
<br>
-312
<br>
.0959
<br>
(B)2.22
<br>
2433
<br>
5othiE)
<br>
As-(9.10
<br>
Ans-yo66
<br>
digit.O
<br>
5.659t.936
<br>
Ans
<br>
B.2)5
<br>
2
o3)
<br>
6921
<br>
2.232
<br>
(sAA24
1G
<br>
64736
<br>

622
<br>
12.56
5
<br>
Ans-2.56
<br>
|2.325
<br>
-03.72345
<br>
368G015
5
<br>
h.2X3:12
<br>
Orision
<br>
Ane-
3)
<br>
Inmultipl'cationcrdeien,thenunber
<br>
19.)2.
<br>
12,3257
<br>
D3-2345
<br>
16.04B45
<br>
4
<br>
2
33|
<br>
2-1
<br>
4.431
<br>
oitoptacus
<br>
32&
<br>
(ol.e)-eN
<br>
Ans
<br>

la)
4cm (b)|4:1
Cm(c)l4.)1cm(d)|9.|2u
Chn
<br>
A=
<br>
A
=
4
x(2.12)2
<br>
A3|4
X2:12X2-)2.
<br>
(b)Co05006 (c)00
05O
<br>
(im)3sF
<br>
0•050O
<br>
bos
<br>
0-O5
<br>

(a)
<br>
()
<br>
(a)
<br>
50.4Cmi211
<br>
(b)
<br>
O00025
A
<br>
ais
comect
<br>
(a)O.lyem
<br>
is
comeat
<br>
Bothare
conmeot
<br>
Veneofhenis
coneet,
<br>
S.F.4
<br>
O.
0002
5
A
SoF
2
<br>
Roac-
394m
<br>
)Comet
<br>
(rf)
mun
<br>
(a)
<br>
1s.FaGa)
<br>
Ani
<br>

SAh
<br>
(9)9,g
<br>
A
=
6q?
<br>
A6X
2o121
<br>
A 26cm2
<br>
"
6Centat
<br>
'b990mtog9
m
(d9.01
<br>

Eresize-es
Chapte
<br>
EmRS
PGT
-2623
<br>
ms
<br>
NNG'S
<br>
ms
<br>
(1
<br>
m2sl
<br>
A
Be
<br>

EmRS
<br>
P+2q-1
<br>
tosti2{1-24)1=1Ver
1-2)
<br>
P
1-21
<br>
(1)
S,
<br>
2-54I
<br>
54-1
<br>
PGT2023
<br>
1
<br>
5-2
<br>
p
<br>
Ans )
<br>

Ane
<br>
KvSPGT20
<br>
An
<br>
KE
<br>
mv2.
<br>
KE
Kmv
<br>
2420)
<br>
3.64
X104
<br>

(a)
<br>
(B)
<br>
5,01)7.
<br>
RD.
<br>
RD
<br>
RD
<br>
510:Ô5
<br>
(D)S
1.2515
<br>
(510.05)4t0.05)
<br>
5t
O.0b
<br>
55
17.Jiahoge
<br>
18)082624
<br>
Sund
<br>
-
<br>

5(H)
<br>
(B)T.
<br>
Sin
<br>
-
Cose
<br>
tane
<br>
Cote-
<br>
Taimonetytr@arfif)
<br>
.
(P)
<br>
ST:.
<br>
1
<br>
tane
<br>
Sne
<br>
HE
<br>
(e)=
<br>
ae
<br>
betweenbase
&Hypotense
<br>
CoSe
<br>
(la)
<br>
LAL
<br>
KRA
<br>
CasecSeLGot
<br>

X
<br>
Ax
<br>
T
<br>
A
<br>
ACosG
<br>
(ie
<br>
oiechem
<br>
H
<br>
Fl0N
<br>
Ax
<br>
Sino=
<br>
L=
<br>
Ay>
<br>
Asino
<br>
Acose
<br>
Asine
<br>
Asine
<br>
A
<br>
H.Cempenet
<br>
ati
caloortpentnt
<br>
A:
Acese
<br>
HoyizontalCperaut
<br>
FCosbo
to
x
5N
<br>
Ventical
Cmpevtant
<br>
FsivotoxyEJSN
<br>

Ex.=rCA)
<br>
Asne
<br>
A
<br>
A
<br>
Acose
<br>
>
A
sine
<br>

Ex
<br>
Neine
<br>
N=
20N
<br>
w
ne
<br>
N
<br>
N&Se
<br>
o
<br>
-9u-6
<br>
96-e
<br>
190X=
18O
<br>
90
<br>
e(alefgr
)
<br>

ASTCRule
<br>
Cosec
<br>
190°
<br>
Cos
<br>
Tan+
<br>
Cot'+'
<br>
taneSne
<br>
Cot
=
<br>
gus(I,I,II,
w)
<br>
A
<br>
(Allsintan,tot)
<br>
teue
<br>
(i1
<br>
90
<br>
270°
<br>
All+'
(Positive)
<br>
Cos
'41
<br>
Sec'+
<br>
1
<br>
3600
<br>
(<
<br>
(e)
<br>

Trick
<br>
Sin9
<br>
Cose
<br>
tane
<br>
cote
<br>
Bece
<br>
ASTC
<br>
Note>
<br>
1J3
<br>
Rule
<br>
2
<br>
3
<br>
45°
<br>
Cos39
5
<br>
2
<br>
J2
<br>
1
<br>
1
<br>
J2
<br>
Snecosec
e
<br>
600°
<br>
J3
<br>
2
<br>
J3
<br>
1
<br>
120185
<br>
Cog53
<br>
-
1
<br>
J3-
<br>
1o
<br>
4
<br>
150
<br>
1
<br>
180
<br>
2
<br>
-1
<br>
Coesa
<br>
S3
<br>
Os3)=
<br>

(4
<br>
5
<br>
132
<br>
2.2
<br>
2.8
<br>
S-3
<br>
P
<br>
15
<br>
16
<br>
20
<br>
I93.62
<br>
22
<br>
312
<br>
23
<br>
3.25
<br>
3.37
<br>
3.5
<br>
3.7
<br>
y
33
<br>
:66
<br>
=5
<br>
3)65neýEup
1(I,t,3;h-)
<br>
265.9
<br>
28
<br>
3)
<br>
23
<br>
B5
<br>
5.29
<br>
36
<br>
5-36
<br>
32S63
<br>
5-45
<br>
5.54
<br>
5
k)
<br>

126,
360
<br>
Ex
<br>
211
2669
<br>
n-4
eren)
<br>
Cos Cos
<br>
ton-tuni
<br>
Sn(t-6)+sine
<br>
Cos(-e)
=*Coxo.
<br>
Sn
240
<br>
Sn
(1B0160)
<br>
Sn(19)in9
<br>
270
<br>
Ex
<br>
360
<br>
s(ke)
<br>
n-a9y
(odd
)
<br>
Ces(360'-ö)
<br>
+Cos
<br>
Cos(290'+36)
<br>

Ex.
<br>
(be)
os120°
<br>
(otun20°
<br>
210°
<br>
-(ot))
<br>
3 LE)-
Cos2)0°
<br>
<tan216°
<br>
Sin90+.80)=
+
<br>
Sn
(18060)
=
<br>
Cos(90t30)
<br>
Casf1y0-6o)
<br>
oe=
<br>
in
6o=
<br>
-
<br>
(270-6)
<br>
ta(90+sc)
=
Cot
30
<br>
CosGo°
=
<br>
tey/1to-co)rtnco
<br>
Cos
(2u-6o)
=
<br>
Sjr(l80h,S
h30
<br>
ios60
<br>
ttnBo
<br>
Cot70
-60°)=t
<br>
-S3
<br>
S3
<br>
Coteo
<br>

9oAugusQ024
<br>
Some
<br>
Formulas
<br>
1
<br>
1+
tan
ec?
<br>
84
Cot
e
<br>
Cosee
<br>
2
<br>
sin
<br>
2
Cos
<br>
20
<br>
Vector
<br>
Quntm
<br>
kianaties
<br>

Operator(7K8)klt,
-,/X,
<br>
Opeation(oo)
<br>
Gfeetiatin
oYcortx
<br>
offerential
operaltor
<br>
Ex
<br>
Constont
<br>
dy
<br>
(
0 aTg)(a)
<br>
(c)
<br>
Athe
functonfx
<br>
vdy
<br>
X
t2c11
<br>
Y=21241
<br>
20)
<br>

Sne
Cos
<br>
Case
<br>
Cosw
<br>
log.x
<br>
(du
<br>
dt
<br>
Lwsihceoe
<br>
dc
<br>
dudx
<br>
dtdx
<br>
Vdy
<br>
d
c
<br>
Ex
=
Y=x
f2)
t
<br>
2x)
<br>
dy
x
<br>
dx
<br>
drc
<br>
+2X
<br>
dt
<br>
dY
<br>
+0
<br>
Ane
<br>
Y6
<br>

Ex
=>
<br>
dx
<br>
dY
<br>
-43X3-l++2(-Snx)
+
4e
<br>
dy
<br>
d
<br>
X2
eX
<br>
SnX
<br>
dy
<br>
dx
<br>
x
<br>
eX
<br>
X
2-et
ex2X2-1
<br>
dx
<br>
dx
<br>
dinx
Syl3x)
<br>
(2x)
<br>
2,
<br>

Y=31240t
+1
<br>
dy
<br>
dt
<br>
dt
<br>
d
<br>
8.2t42.4-40
<br>
Snx
<br>
+
<br>
dex
<br>
det
<br>
Suxe
<br>
der
<br>
ix
<br>
d
<br>
(sinx
<br>
eXdinx
<br>
dt
<br>

Ex
=
<br>
Y=
2
X+8x49CoSxt35eX
<br>
Maxima
<br>
dx
<br>
d
<br>
mùnipg
<br>
maxima(31eidd)
<br>
Xpol.
<br>

Y=22
<br>
dx
<br>
dx2
<br>
x=3
<br>

ExY=
10DOx~2x2
<br>
Sh
<br>
dxe
<br>
dx
<br>
X
<br>
fh)
<br>
1000-4
X
h
<br>
thettheir
<br>
thejrelet
kmax./mn
<br>
xb
<br>
X0S0-X)
<br>
(102S0-X)
<br>

dP
<br>
dx
<br>
-10O-2xX
<br>
2X>|VDO
<br>
X1000
<br>
Ans500,S
<br>
12
<br>

1
<br>
Limts
<br>
S
<br>
X
<br>
Xh+)
<br>
ht1
<br>
19 )Gloon
<br>
Inteatn
Yaith
wepeotto
<br>
X(bho
Xi
toh)
<br>
qx)
<br>
(
<br>
X
<br>
xnt
<br>

-
<br>
8
<br>
Sin
<br>
x
<br>
Cosx
<br>
X
<br>
Sinwt
-Cosot
<br>
-Cos
X
<br>
Ex:)Y=3x2+2X41
<br>
Ydx
3X21)
<br>
3.
<br>
Xl)
<br>
3X+
2X2
<br>
e*+
3)eg
X+4X
<br>
41
<br>
24)
<br>
-2+1
<br>
+1X
<br>
+1X
<br>

3
<br>
Uppe
<br>
Xob)
<br>
+
<br>
2X+|
<br>
2+|
<br>
27+
<br>
2X
3X+1X
<br>
3
<br>
3
<br>
-+3X
+
1X1)
<br>
3
<br>
169
<br>
Leswes
<br>
6
<br>
(hc1624295
<br>
3.3
+
<br>
-
<br>
162
+
2+-4-)8-3
<br>
(3)
))Cb2
<br>
-21s]
<br>
2
<br>
25
<br>
2
<br>
)
<br>
14|
<br>
9.33
<br>
+3.4
<br>
162-+
2
<br>
2
<br>
least
commey
<br>
mltißle
<br>

WorldofWisdom
<br>
YOURWISDOM
<br>