F
<br>
F
=
(GmMa
<br>
h=
<br>
mass
<br>
k
<br>
2roit9rmic)
<br>
nU
K
<br>
Uwversal
Gncuitatienal
<br>
lG.67XI671!
<br>
A
<br>
fia(Constantttueagit
<br>
Constaut
<br>
A
B1
<br>
Constamtr8
<br>
af
<br>
B
<br>
af
<br>
1
<br>
Pownd
<br>
U,
<br>
1
<br>
1000
<br>
453.
<br>
Poumd ym
<br>
A22
<br>
453.6
n
<br>
Okg=
212
pondo
<br>
Cressmuipy
<br>
KPound
<br>
001
<br>
8H081
<br>
1m
<br>
lm
<br>
m
<br>
(9
1
Fot
=
3048
Cm229r)
<br>
1&
<br>
Ans
<br>
Foot
<br>
m)
<br>
100cm
<br>
Cm
<br>
30.48
<br>
Arrge
<br>
cm
<br>
8.3
oot
<br>
the
<br>
crder
<br>
U
<br>
Singula
<br>
Fot
<br>
FPS
<br>
bellauing
<br>
mediun
<br>
1y1
Peund
1m
<br>
Plwal
<br>
brso
<br>
<anitsochagein
<br>
esy<c<emy
<
Faraday
<br>
yst
Girade
<br>
A=Bc
<br>
n
<br>
asin
<br>
()=
asinvt
<br>
T
ol
<br>
bm
<br>
L(a)*=(
sin2t,os2t
<br>
Ca)(a,br) (5)
<br>
(9)4=
asin
<br>
(b)
<br>
m
<br>
m= =
1
<br>
m
<br>
T
<br>
S
<br>
sin)
<br>
n1)
<br>
asinvt)
<br>
S
<br>
(ant:)
<br>
=1=
<br>
)
<br>
-fameHS9(vt-1)
<br>
-[m1]
<br>
A
<br>
2It
<br>
T
<br>
+Cos
<br>
+
<br>
23t
<br>
25Tt
<br>
K
(yB)
=
RT
<br>
Unit
ags
<br>
Dimanaionleas
<br>
P+
<br>
1
<br>
PV-PB
+ -
<br>
AV
<br>
[A]=[Py
<br>
A]
<br>
2
<br>
AB
<br>
RT
<br>
TK
ms
<br>
Luky
<br>
(
<br>
SSXS
<br>
(Q.40
<br>
Solh
<br>
P=
<br>
Vt xs
<br>
mL'T
<br>
b
<br>
P
<br>
Pqt2
<br>
p.eo
,
X
<br>
b
<br>
Q.4)
F
(x/nra)tcsy
y
<br>
Sol
<br>
(4)mT]
<br>
(6)mLT-3
<br>
An
<br>
X
<br>
denit
<br>
Q.42
<br>
t
<br>
A
<br>
thetollsj
<br>
I-1
<br>
P
<br>
GivenAcos
(-qx
<br>
=
<br>
t-time,Xdictance,thenohieh
<br>
sttement
La
corecte
<br>
y=q
Cos
<br>
cos(1)
<br>
O1)n
<br>
ohee
<br>
2
<br>
pate
21)06|202y
<br>
Fsi
<br>
yER
<br>
(9)
x
<br>
le)x
fan
<br>
X
<br>
X=
<br>
t
<br>
qsin
e
bcose
<br>
209P
<br>
a
sne4bcose
<br>
a+b
<br>
q.1+b.1
<br>
Ansc)
<br>
Q.
54)
<br>
K=
<br>
1stGrede
<br>
(6)
m T
<br>
K X
9
<br>
[me
<br>
(
<br>
(P)
<br>
Q.55]K
fellauwingfomadadecibea
velatio,
<br>
bw
preswedstancethey
<br>
(6)lm°LT
<br>
tc)meLeT°)
<br>
(4)Lm°L'T
<br>
P
<br>
KO
<br>
X
<br>
P=
<br>
.
56
<br>
(G)
<br>
(5)
<br>
lc)
<br>
(d)
<br>
G7
<br>
Gmjma.
<br>
G
F2
<br>
m
<br>
Lgennlg
(Ea)
<br>
X
<br>
n
<br>
X
<br>
X
<br>
3
<br>
Ans
<br>
m
<br>
Q.5+
<br>
(a)O1N
<br>
F=
mna
<br>
F
<br>
F
"
<br>
F
tem
<br>
F
0m)
(10em)
<br>
10X10
<br>
(o1)>
<br>
)00
<br>
0.1
=
16
<br>
(b)JN
<br>
(D.1s)
stierRa3l
<br>
mcm
<br>
101
x
1oN
<br>
16
N
<br>
S2
<br>
O1N
<br>
2
<br>
O.1SeceYd
<br>
-2
<br>
29o
<br>
N
<br>
Thene
<br>
2-624
<br>
he
many
<br>
Thosewho
<br>
X=AtAA
<br>
AB
<br>
Am
<br>
Cmore
<br>
S
bothenaslouldNot.
besoprUMd,
<br>
Ae
<br>
XY=ABtAABt
AABtAHÀB
<br>
4192ir
<br>
262|1
D
<br>
SB
<br>
2.62
<br>
Eras.to
comeA
<br>
AB
<br>
AAB
<br>
<<<<<<osAÐAB
<br>
X=A±AA
<br>
Y
8
±AB
<br>
Ne:
<br>
Y.X
<br>
3
(Divisien)
<br>
XA"
<br>
A
<br>
A
<br>
m
<br>
A
<br>
(5)Šle
(Powe)
<br>
AB
<br>
a)+(
<br>
8
(43)
<br>
B
<br>
Note!-Sumy
<br>
S.G202i
<br>
Q.G
<br>
AtB
<br>
Ca)
A
<br>
AA+AB
<br>
A-B
<br>
ODx
<br>
(b)B
<br>
.A+7.B
<br>
A
<br>
7A+/.8
<br>
B)
<br>
Sne
Cos
<br>
Case
<br>
Cosw
<br>
log.x
<br>
(du
<br>
dt
<br>
Lwsihceoe
<br>
dc
<br>
dudx
<br>
dtdx
<br>
Vdy
<br>
d
c
<br>
Ex
=
Y=x
f2)
t
<br>
2x)
<br>
dy
x
<br>
dx
<br>
drc
<br>
+2X
<br>
dt
<br>
dY
<br>
+0
<br>
Ane
<br>
Y6
<br>
Ex
=>
<br>
dx
<br>
dY
<br>
-43X3-l++2(-Snx)
+
4e
<br>
dy
<br>
d
<br>
X2
eX
<br>
SnX
<br>
dy
<br>
dx
<br>
x
<br>
eX
<br>
X
2-et
ex2X2-1
<br>
dx
<br>
dx
<br>
dinx
Syl3x)
<br>
(2x)
<br>
2,
<br>
Y=31240t
+1
<br>
dy
<br>
dt
<br>
dt
<br>
d
<br>
8.2t42.4-40
<br>
Snx
<br>
+
<br>
dex
<br>
det
<br>
Suxe
<br>
der
<br>
ix
<br>
d
<br>
(sinx
<br>
eXdinx
<br>
dt
<br>
Ex
=
<br>
Y=
2
X+8x49CoSxt35eX
<br>
Maxima
<br>
dx
<br>
d
<br>
mùnipg
<br>
maxima(31eidd)
<br>
Xpol.
<br>
Y=22
<br>
dx
<br>
dx2
<br>
x=3
<br>
ExY=
10DOx~2x2
<br>
Sh
<br>
dxe
<br>
dx
<br>
X
<br>
fh)
<br>
1000-4
X
h
<br>
thettheir
<br>
thejrelet
kmax./mn
<br>
xb
<br>
X0S0-X)
<br>
(102S0-X)
<br>