Physics barriers and tunneling

Mohamed_Anwarvic 5,233 views 78 slides Dec 10, 2012
Slide 1
Slide 1 of 78
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78

About This Presentation

No description available for this slideshow.


Slide Content

Ain Shams University
Mathematics and Engineering Physics Department
Pre-Junior Communication Systems Engineering Students
Lecture 11 
Modern Physics and Quantum Mechanics Course (EPHS 240) 
9 December 2009
Dr. Hatem El-Refaei

[email protected] Dr. Hatem El-Refaei 1
Contents
MInfinite barrier
MFinite barrier 
MQuantum tunnelling

[email protected] Dr. Hatem El-Refaei 2
Note
MAll problems today are unbounded problem, i.e. the 
particle is not confined in a certain region, so:
MWe will not be able to do the normalization condition.
MTherefore, we will not be able to solve for all unknowns.
MTherefore, we will not get a characteristic equation.
MTherefore, energy levels are not quantized, and all energies 
are possible.
MBut still there are a lot of important characteristics to 
understand and learn today.

[email protected] Dr. Hatem El-Refaei 3
Infinite barrier

[email protected] Dr. Hatem El-Refaei 4
Potential step of infiniteheight and infinitewidth
MSince the barrier height is infinite, incident particles can’t
penetratethroughit,andparticlesreflectback.
MSo, there is zero probability of finding the particle inside
thestepbarrier.
MHere,theQMsolutionleadstothesameclassicalsolution.
Energy
∞ ∞
x
E

[email protected] Dr. Hatem El-Refaei 5
Potential step of infiniteheight and infinite
width
()
jkxjkx
BeAex

+= ψ
( )






−−






+=Ψ
t
E
kxjt
E
kxj
BeAetx
hh
,
0
2
22
2
=+
I
IE
m
dx

ψ
h
Backward 
propagating wave
Forward 
propagating wave
∞=U
()0=xψ
h
mE
k
2
=
E
Energy, ψ
∞ ∞
x
0

[email protected] Dr. Hatem El-Refaei 6
Potential step of infiniteheight and infinite
width
( )( )
+−
=== 00 xxψ ψ
0=+BA
Energy, ψ
∞ ∞
x
0
∞=U
()0=xψ
E
()
jkxjkx
BeAex

+= ψ
0
2
22
2
=+
I
IE
m
dx

ψ
h
h
mE
k
2
=

[email protected] Dr. Hatem El-Refaei 7
Potential step of infiniteheight and infinite
width
AB−=
() ()kxjAx sin2=ψ
Energy, ψ
∞ ∞
x
0
∞=U
()0=xψ()
jkxjkx
AeAex

−= ψ
()( )
jkxjkx
eeAx

−= ψ
Sin(x) E
0
2
22
2
=+
I
IE
m
dx

ψ
h

[email protected] Dr. Hatem El-Refaei 8
Potential step of infiniteheight and infinite
width
AB−=
Reflectivity  1
Re
2
===


AA
BB
AmplitudeIncident
Amplitudeflected
R
All the incident particle stream is reflected back.
Energy, ψ
∞ ∞
x
0
Sin(x) E

[email protected] Dr. Hatem El-Refaei 9
Potential step of infiniteheight and infinite
width
MSince the barrier extends to infinity in the x direction, no particle can penetrate
through the whole barrier. From phenomenological understanding, as x→∞,
ψ→0.
Energy, ψ
∞ ∞
x
0
Sin(x) E

[email protected] Dr. Hatem El-Refaei 10
Finite barrier

[email protected] Dr. Hatem El-Refaei 11
Potential step of finite height and infinite
width
MAsthestepheightU
ogetssmaller(butstillE<U
o),
the penetration of the particles inside the step
increases, but finally no particles will succeed to
travelthroughthewholesteptox→∞.
Energy

x
U
o
0
E<U
o
E

[email protected] Dr. Hatem El-Refaei 12
Potential step of finite height and infinite
width
0
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
I
E
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
II
UE
m
dx
d
ψ
ψ
h
()
xx
II
DeeCx
αα ψ +=

Energy

x
U
o
MWe have 4 unknowns (A,B,C, and D) and 3 equations:
MFiniteness of  ψat x=∞
MContinuity of ψat x=0
MContinuity of  ∇ψat x=0
E<U
o
( )
0
2
>

=
h
EUm
o
α
h
mE
k
2
=
E

[email protected] Dr. Hatem El-Refaei 13
Potential step of finite height and infinite
width
0
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
I
E
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
II
UE
m
dx
d
ψ
ψ
h
()
xx
II
DeeCx
αα ψ +=

Energy

x
U
o
E<U
o
MTheconditionthatψ(x)mustbefiniteasx→∞,leadstoD=0
( )
0
2
>

=
h
EUm
o
α
h
mE
k
2
=
E

[email protected] Dr. Hatem El-Refaei 14
Potential step of finite height and infinite
width
0
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
I
E
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
II
UE
m
dx
d
ψ
ψ
h
()
x
II
eCx
αψ

=
Energy

x
U
o
E<U
o
MTheconditionthatψ(x)mustbefiniteasx→∞,leadstoD=0
( )
0
2
>

=
h
EUm
o
α
h
mE
k
2
=
E

[email protected] Dr. Hatem El-Refaei 15
Potential step of finite height and infinite
width
0
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
I
E
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
II
UE
m
dx
d
ψ
ψ
h
()
x
II
eCx
αψ

=
Energy

x
U
o
MWe have 3 unknowns (A,B,C) and 2 equations:
MContinuity of ψ
MContinuity of  ∇ψ
MThus, the best we can get is the ratio between parameters.
E<U
o
( )
0
2
>

=
h
EUm
o
α
h
mE
k
2
=
E

[email protected] Dr. Hatem El-Refaei 16
Potential step of finite height and infinite
width
() ()00 === xx
III ψψ
Continuity ofψ
CBA=+
Continuity of dψ/dx
00 ==
=
x
II
x
Idx
d
dx
d
ψψ
( ) CBAjk α−=−
C
k
jA 





+=
α
1
2
1
C
k
jB 





−=
α
1
2
1

x
U
o
Energy
E<U
o
( )
0
2
>

=
h
EUm
o
α
h
mE
k
2
=
0
E
()
jkxjkx
I
BeAex

+=
ψ ()
x
II
eCx
αψ

=

[email protected] Dr. Hatem El-Refaei 17
Potential step of finite height and infinite
width
C
k
jA 





+=
α
1
2
1
C
k
jB 





−=
α
1
2
1
Reflectivity  1
11
11
Re
2
=






−





+






+






===


k
j
k
j
k
j
k
j
AA
BB
AmplitudeIncident
Amplitudeflected
R
αα
αα
Energy
E<U
o
( )
0
2
>

=
h
EUm
o
α
h
mE
k
2
=
0
E

[email protected] Dr. Hatem El-Refaei 18
Potential step of finite height and infinite
width
jkxjkx
Ce
k
jCe
k
j







−+





+=αα
1
2
1
1
2
1
( )
( ) ( )











≤−
=

0
0sincos
xeC
xkxC
k
kxC
x

α
ψ
()
jkxjkx
I
BeAex

+=
ψ

x
U
o
0
C
( )







−
+







+
=
−−
22
jkxjkxjkxjkx
I
ee
C
k
j
ee
Cxα
ψ
Energy

[email protected] Dr. Hatem El-Refaei 19
Potential step of finite height and infinite
width
MSince the barrier height is finite, particles can penetrate partially
inthevicinityofthepotentialstep,andthentheyreflectback.
MSo, there is a finite probability of finding the particle in the
classicallyforbiddenposition.
MHere,theQMsolutionisdifferentfromtheclassicalone.

x
U
o
0
C
Energy

[email protected] Dr. Hatem El-Refaei 20
Potential step of finite height and infinite
width
Case 2
Case 2
x
0
Energy
Case 3
Case 3
E<U
o
( )
0
2
>

=
h
EUm
o
α
MAs the potential barrier height increases (U
o
increases)(fromcase2tocase 3),αalsoincreases,
andthustheexponentialfunctiondiesquickerinside
thebarrier.Thusitbecomeslessprobabletofindthe
particleinsidethebarrier.
()
x
eCx
α
ψ

=

[email protected] Dr. Hatem El-Refaei 21
Potential step of finite height and infinite
width
MIfthebarrierheight(U
o)iskeptconstant,buttheparticle
energyincreases(providedE<U
o),thusαdecreases,and
the particle exponential function dies slower inside the
barrier. Hence, it becomes more probable to find the
particleinthevicinityofthebarrieredge.
x
0
Energy
E<U
o
( )
0
2
>

=
h
EUm
o
α
()
x
eCx
α
ψ

=

[email protected] Dr. Hatem El-Refaei 22
Tunneling through a potential 
barrier

[email protected] Dr. Hatem El-Refaei 23
Potential barrier of finiteheight and finite
width
MA stream of particles incident on a finite width and height
potentialbarrierwith
E<U
o.
MPart of the incident stream will succeed to penetrate through the
barrierandappearontheotherside,thisisthetransmittedstream.
Theotherpartwillreflectbackformingthereflectedstream.
MNote,asingleparticledoesn’tsplitintotwo.
x
U
o
E<U
o
E
Energy

[email protected] Dr. Hatem El-Refaei 24
Potential barrier of finiteheight and finite
width
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
IE
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
IIUE
m
dx
d
ψ
ψ
h
()
xx
II
eDeCx
γγ
ψ

+= ()
jkxjkx
III
FeGex

+=
ψ
0
2
22
2
=+
III
IIIE
m
dx
d
ψ
ψ
h
Energy
x
U
o
0a
E<U
o
( )
0
2
>

=
h
EUm
o
γ
h
mE
k
2
=
MWe have 6 unknowns (A,B,C,D,G,F) and 5 boundary conditions    
MContinuity of ψand ∇ψat x=0.
MContinuity of ψand ∇ψat x=a.
MOnly a forward propagating wave on the right hand side of the barrier.

[email protected] Dr. Hatem El-Refaei 25
Potential barrier of finiteheight and finite
width
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
IE
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
IIUE
m
dx
d
ψ
ψ
h
()
xx
II
eDeCx
γγ
ψ

+= ()
jkxjkx
III
FeGex

+=
ψ
0
2
22
2
=+
III
IIIE
m
dx
d
ψ
ψ
h
Energy
x
U
o
0a
E<U
o
MWe have 6 unknowns (A,B,C,D,G,F) and 5 boundary conditions    
MContinuity of ψand ∇ψat x=0.
MContinuity of ψand ∇ψat x=a.
MOnly a forward propagating wave on the right hand side of the barrier.

[email protected] Dr. Hatem El-Refaei 26
Potential barrier of finiteheight and finite
width
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
IE
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
IIUE
m
dx
d
ψ
ψ
h
()
xx
II
eDeCx
γγ
ψ

+= ()
jkx
III
Gex=
ψ
0
2
22
2
=+
III
IIIE
m
dx
d
ψ
ψ
h
Energy
x
U
o
0a
E<U
o
MWe have 5 unknowns (A,B,C,D,G) and 4 boundary conditions    
MContinuity of ψand ∇ψat x=0.
MContinuity of ψand ∇ψat x=a.

[email protected] Dr. Hatem El-Refaei 27
Potential barrier of finiteheight and finite
width
We are interested in the transmission probability (T)
22
A
G
AA
GG
AmplitudeIncident
AmplitudedTransmitte
T ===


Energy
x
U
o
0a
E<U
o
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
IE
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
IIUE
m
dx
d
ψ
ψ
h
()
xx
II
eDeCx
γγ
ψ

+= ()
jkx
III
Gex=
ψ
0
2
22
2
=+
III
IIIE
m
dx
d
ψ
ψ
h

[email protected] Dr. Hatem El-Refaei 28
Potential barrier of finiteheight and finite
width
And reflection probability (R)
22
Re
A
B
AA
BB
AmplitudeIncident
Amplitudeflected
R ===


Energy
x
U
o
0a
E<U
o
()
jkxjkx
I
BeAex

+=
ψ
0
2
22
2
=+
I
IE
m
dx
d
ψ
ψ
h ( ) 0
2
22
2
=−+
IIo
IIUE
m
dx
d
ψ
ψ
h
()
xx
II
eDeCx
γγ
ψ

+= ()
jkx
III
Gex=
ψ
0
2
22
2
=+
III
IIIE
m
dx
d
ψ
ψ
h

[email protected] Dr. Hatem El-Refaei 29
Potential barrier of finiteheight and finite
width
MFirst set of boundary conditions at x=0
() ()00 === xx
III
ψψ
DCBA +=+
00 ==
=
x
II
x
Idx
d
dx
d
ψψ
DCjkBjkA
γγ−=−
MSecond set of boundary conditions at x=a
() ()axax
IIIII
===ψψ
ax
III
ax
IIdx
d
dx
d
==
=
ψψ
ikaaa
eGeDeC =+
−γγ ikaaa
eGikeDeC =−
−γγ
γγ

[email protected] Dr. Hatem El-Refaei 30
Potential barrier of finiteheight and finite
width
DCBA +=+
(1)
DCjkBjkA γγ−=−
(2)
ikaaa
eGeDeC =+
−γγ
(3)
ikaaa
eGikeDeC =−
−γγ
γγ
(4)
MEq. (3) ×γ+ Eq. (4) to eliminate D.
MEq. (3)×(-γ) + Eq. (4) to eliminate C.
( )
Ge
jk
C
ajkγ
γ
γ
−+
=
2
(5)
( )
Ge
jk
D
ajkγ
γ
γ
+−
=
2
(6)

[email protected] Dr. Hatem El-Refaei 31
Potential barrier of finiteheight and finite
width
MEq. (1) × jk+ Eq. (2) to eliminate B
( )( )DjkCjkjkA γγ −++=2 (7)
MSubstitute from eq. (5) and (6) into (7), we get an equation of A 
and G only.
( )
( )
( )
( )[ ]GejkejkjkA
ajkajkγγ
γγ
γ
+−
−−+=
22
2
1
2
(8)
DCBA +=+
(1)
DCjkBjkA γγ−=−
(2)
ikaaa
eGeDeC =+
−γγ
(3)
ikaaa
eGikeDeC =−
−γγ
γγ
(4)

[email protected] Dr. Hatem El-Refaei 32
Transmission and Reflection Coefficients
MIt is an assignment to show that the transmission coefficient is
givenby
( )
( )a
EUE
UAA
GG
T
o
o
γ
2
2
sinh
4
1
1
1

+
==


MAlso it is an assignment to show that the reflection coefficient
isgivenby
( )
( )
( )
( )a
EUE
U
a
EUE
U
AA
BB
R
o
o
o
o
γ
γ
2
2
2
2
sinh
4
1
1
sinh
4
1

+

==

[email protected] Dr. Hatem El-Refaei 33
Transmission and Reflection Coefficients
MAfter proving both relations, it will be clear to you that
1=+TR
MWhich is logical as an incident particle is either reflected or 
transmitted.
MYou may need to use the following relations
( )
2
sinh
zz
ee
z


=
( )
2
cosh
zz
ee
z

+
=
() ()1sinhcosh
22
=− zz

[email protected] Dr. Hatem El-Refaei 34
Transmission coefficient versus barrier width
EOne notices that shrinking the barrier width by half resultsin a dramatic
increaseinthetransmissioncoefficient.Itisnota linearrelation.
EAlso doubling the particle energy results in exponential increase in the
transmissioncoefficient.
An electron is tunneling through 1.5 eV barrier
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 0.25 0.5 0.75 1 1.25 1.5
Energy (e.V)
Transmission Coffecient
a=0.5 nm
a=1 nm
a=2 nm
a=4 nm

[email protected] Dr. Hatem El-Refaei 35
Reflection coefficient versus barrier width
An electron is tunneling through 1.5 eV barrier
0
0.2
0.4
0.6
0.8
1
1.2
0 0.25 0.5 0.75 1 1.25 1.5
Energy (e.V)
Reflection Coffecient
a=0.5 nm
a=1 nm
a=2 nm
a=4 nm
ENoticethatR=1-T

[email protected] Dr. Hatem El-Refaei 36
Plotting the wave function
MNow we have found all
constantsintermsofA.
MWe can plot the shape of
the wave function in all
regions.
MOne would expect that as the barrier gets smaller in height
and/or narrower in width more particles will be able to cross
thebarriertotheotherside.
MThisresultsinahighertransmissioncoefficient“T”,andalsoa
largeramplitudeforthetransmittedwave“G”.
MCheck:http://phys.educ.ksu.edu/vqm/html/qtunneling.html
G

[email protected] Dr. Hatem El-Refaei 37
Contradiction with Classical Mechanics
MThis results are in contradiction with the classical mechanics
which predicts that is the particle’s energy is lower than the
barrier height, the particle overcome the barrier and thus can
notexistintherighthandside.
G

[email protected] Dr. Hatem El-Refaei 38
Remember classical mechanics
A man at rest here
Will never be able to 
pass this point
So he can’t 
exist here

Ain Shams University
Mathematics and Engineering Physics Department
1
st
Year Electrical Engineering
Lecture 11 
Modern Physics and Quantum Mechanics Course
Dr. Hatem El-Refaei

Dr. Hatem El-Refaei1
Contents
M
Infinite barrier
M
Finite barrier 
M
Quantum tunnelling

Dr. Hatem El-Refaei2
Note
M
All problems today are unbounded problem, i.e. the 
particle is not confined in a certain region, so:
M
We will not be able to do the normalization condition.
M
Therefore, we will not be able to solve for all unknowns.
M
Therefore, we will not get a characteristic equation.
M
Therefore, energy levels are not quantized, and all energies 
are possible.
M
But still there are a lot of important characterist ics to 
understand and learn today.

Dr. Hatem El-Refaei3
Infinite barrier

Dr. Hatem El-Refaei4
Potential step of 
infinite
height and 
infinite
width
M
Since the barrier height is infinite, incident particles can’t
penetratethroughit,andparticlesreflectback. M
So, there is zero probability of finding the particle inside
thestepbarrier. M
Here,theQMsolutionleadstothesameclassicalsolution.
Energy


x
E

Dr. Hatem El-Refaei5
Potential step of 
infinite
height and 
infinite
width
(
)
jkx jkx
Be Ae x

+ =
ψ
( )






− − 






+ = Ψ
t
E
kx j t
E
kxj
Be Ae tx
h h
,
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
Backward 
propagating wave
Forward 
propagating wave

=
U
(
)
0
=
x
ψ
h
mE
k
2
=
E
Energy, ψ


x
0

Dr. Hatem El-Refaei6
Potential step of 
infinite
height and 
infinite
width
(
)
(
)
+ −
= = =0 0x x
ψ
ψ
0
=
+
B A
Energy, ψ


x
0

=
U
(
)
0
=
x
ψ
E
(
)
jkx jkx
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
h
mE
k
2
=

Dr. Hatem El-Refaei7
Potential step of 
infinite
height and 
infinite
width
A
B

=
(
)
(
)
kx jA xsin 2
=
ψ
Energy, ψ


x
0

=
U
(
)
0
=
x
ψ
(
)
jkx jkx
Ae Ae x

− =
ψ
(
)
(
)
jkx jkx
e eA x

− =
ψ
Sin(x)
E 0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h

Dr. Hatem El-Refaei8
Potential step of 
infinite
height and 
infinite
width
A
B

=
Reflectivity 
1
Re
2
= = =


AA
BB
Amplitude Incident
Amplitude flected
R
All the incident particle stream is reflected back.
Energy, ψ


x
0
Sin(x)
E

Dr. Hatem El-Refaei9
Potential step of 
infinite
height and 
infinite
width
M
Since the barrier extends to infinity in the x direction, no p article can penetrate
through the whole barrier. From phenomenological understa nding, as x→∞,
ψ→0.
Energy, ψ


x
0
Sin(x)
E

Dr. Hatem El-Refaei 10
Finite barrier

Dr. Hatem El-Refaei 11
Potential step of 
finite 
height and 
infinite
width
M
Asthestepheight
U
o
getssmaller(butstill
E<U
o
),
the penetration of the particles inside the step
increases, but finally no particles will succeed to
travelthroughthewholesteptox→∞.
Energy

x
U
o
0
E<U
o
E

Dr. Hatem El-Refaei 12
Potential step of 
finite 
height and 
infinite
width
0
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x x
II
De eC x
α α
ψ
+ =

Energy

x
U
o
M
We have 4 unknowns (A,B,C, and D) and 3 equations:
M
Finiteness of  ψat x=∞
M
Continuity of ψat x=0
M
Continuity of  ∇ψat x=0
E<U
o
(
)
0
2
>

=
h
E Um
o
α
h
mE
k
2
=
E

Dr. Hatem El-Refaei 13
Potential step of 
finite 
height and 
infinite
width
0
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x x
II
De eC x
α α
ψ
+ =

Energy

x
U
o
E<U
o
M
Theconditionthatψ(x)mustbefiniteasx→∞,leadstoD=0
(
)
0
2
>

=
h
E Um
o
α
h
mE
k
2
=
E

Dr. Hatem El-Refaei 14
Potential step of 
finite 
height and 
infinite
width
0
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x
II
eC x
α
ψ

=
Energy

x
U
o
E<U
o
M
Theconditionthatψ(x)mustbefiniteasx→∞,leadstoD=0
(
)
0
2
>

=
h
E Um
o
α
h
mE
k
2
=
E

Dr. Hatem El-Refaei 15
Potential step of 
finite 
height and 
infinite
width
0
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x
II
eC x
α
ψ

=
Energy

x
U
o
M
We have 3 unknowns (A,B,C) and 2 equations:
M
Continuity of ψ
M
Continuity of  ∇ψ
M
Thus, the best we can get is the ratio between parameters.
E<U
o
(
)
0
2
>

=
h
E Um
o
α
h
mE
k
2
=
E

Dr. Hatem El-Refaei 16
Potential step of 
finite 
height and 
infinite
width
(
)
(
)
0 0
=
=
=
x x
II I
ψ
ψ
Continuity ofψ
C B A
=
+
Continuity of dψ/dx
0 0= =
=
x
II
x
I
dx
d
dx
dψ ψ
(
)
C BAjk
α

=

C
k
j A





+ =
α
1
2
1
C
k
j B





− =
α
1
2
1

x
U
o
Energy
E<U
o
(
)
0
2
>

=
h
E Um
o
α
h
mE
k
2
=
0
E
(
)
jkx jkx
I
Be Ae x

+ =
ψ
(
)
x
II
eC x
α
ψ

=

Dr. Hatem El-Refaei 17
Potential step of 
finite 
height and 
infinite
width
C
k
j A





+ =
α
1
2
1
C
k
j B





− =
α
1
2
1
Reflectivity 
1
1 1
1 1
Re
2
=






− 





+






+ 






= = =


k
j
k
j
k
j
k
j
AA
BB
Amplitude Incident
Amplitude flected
Rα α
α α
Energy
E<U
o
(
)
0
2
>

=
h
E Um
o
α
h
mE
k
2
=
0
E

Dr. Hatem El-Refaei 18
Potential step of 
finite 
height and 
infinite
width
jkx jkx
Ce
k
j Ce
k
j







− + 





+ =
α α
1
2
1
1
2
1
( )
( )
( )











≤ −
=

0
0 sin cos
x eC
x kx C
k
kx C
x
x
α
α
ψ
(
)
jkx jkx
I
Be Ae x

+ =
ψ

x
U
o
0
C
( )







−
+







+
=
− −
2 2
jkx jkx jkx jkx
I
e e
C
k
j
e e
C x
α
ψ
Energy

Dr. Hatem El-Refaei 19
Potential step of 
finite 
height and 
infinite
width
M
Since the barrier height is finite, particles can penetrate parti ally
inthevicinityofthepotentialstep,andthentheyreflectback. M
So, there is a finite probability of finding the particle in the
classicallyforbiddenposition. M
Here,theQMsolutionisdifferentfromtheclassicalone.

x
U
o
0
C
Energy

Dr. Hatem El-Refaei 20
Potential step of 
finite 
height and 
infinite
width
Case 2
Case 2
x
0
Energy
Case 3
Case 3
E<U
o
(
)
0
2
>

=
h
E Um
o
α
M
As the potential barrier height increases (U
o
increases)(fromcase2tocase 3),αalsoincreases,
andthustheexponentialfunctiondiesquickerinside
thebarrier.Thusitbecomeslessprobabletofindthe
particleinsidethebarrier.
(
)
x
eC x
α
ψ

=

Dr. Hatem El-Refaei 21
Potential step of 
finite 
height and 
infinite
width
M
Ifthebarrierheight(U
o
)iskeptconstant,buttheparticle
energyincreases(providedE<U
o
),thusαdecreases,and
the particle exponential function dies slower inside the
barrier. Hence, it becomes more probable to find the
particleinthevicinityofthebarrieredge.
x
0
Energy
E<U
o
(
)
0
2
>

=
h
E Um
o
α(
)
x
eC x
α
ψ

=

Dr. Hatem El-Refaei 22
Tunneling through a potential 
barrier

Dr. Hatem El-Refaei 23
Potential barrier of 
finite
height and 
finite
width
M
A stream of particles incident on a finite width and height
potentialbarrierwith
E<U
o.
M
Part of the incident stream will succeed to penetrate through the
barrierandappearontheotherside,thisisthetransmittedstream.
Theotherpartwillreflectbackformingthereflectedstream.
M
Note,asingleparticledoesn’tsplitintotwo.
x
U
o
E<U
o
E
Energy

Dr. Hatem El-Refaei 24
Potential barrier of 
finite
height and 
finite
width
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x x
II
eD eC x
γ γ
ψ

+ =
(
)
jkx jkx
III
Fe Ge x

+ =
ψ
0
2
2 2
2
= +
III
III
E
m
dx
d
ψ
ψ
h
Energy
x
U
o
0a
E<U
o
(
)
0
2
>

=
h
E Um
o
γ
h
mE
k
2
=
M
We have 6 unknowns (A,B,C,D,G,F) and 5 boundary conditions    
M
Continuity of ψand ∇ψat x=0.
M
Continuity of ψand ∇ψat x=a.
M
Only a forward propagating wave on the right hand s ide of the barrier.

Dr. Hatem El-Refaei 25
Potential barrier of 
finite
height and 
finite
width
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x x
II
eD eC x
γ γ
ψ

+ =
(
)
jkx jkx
III
Fe Ge x

+ =
ψ
0
2
2 2
2
= +
III
III
E
m
dx
d
ψ
ψ
h
Energy
x
U
o
0a
E<U
o
M
We have 6 unknowns (A,B,C,D,G,F) and 5 boundary conditions    
M
Continuity of ψand ∇ψat x=0.
M
Continuity of ψand ∇ψat x=a.
M
Only a forward propagating wave on the right hand s ide of the barrier.

Dr. Hatem El-Refaei 26
Potential barrier of 
finite
height and 
finite
width
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x x
II
eD eC x
γ γ
ψ

+ =
(
)
jkx
III
Ge x=
ψ
0
2
2 2
2
= +
III
III
E
m
dx
d
ψ
ψ
h
Energy
x
U
o
0a
E<U
o
M
We have 5 unknowns (A,B,C,D,G) and 4 boundary conditions    
M
Continuity of ψand ∇ψat x=0.
M
Continuity of ψand ∇ψat x=a.

Dr. Hatem El-Refaei 27
Potential barrier of 
finite
height and 
finite
width
We are interested in the transmission probability (T)
2 2
A
G
AA
GG
Amplitude Incident
Amplitude d Transmitte
T= = =


Energy
x
U
o
0a
E<U
o
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x x
II
eD eC x
γ γ
ψ

+ =
(
)
jkx
III
Ge x=
ψ
0
2
2 2
2
= +
III
III
E
m
dx
d
ψ
ψ
h

Dr. Hatem El-Refaei 28
Potential barrier of 
finite
height and 
finite
width
And reflection probability (R)
2 2
Re
A
B
AA
BB
Amplitude Incident
Amplitude flected
R= = =


Energy
x
U
o
0a
E<U
o
(
)
jkx jkx
I
Be Ae x

+ =
ψ
0
2
2 2
2
= +
I
I
E
m
dx
d
ψ
ψ
h
( )
0
2
2 2
2
= − +
II o
II
UE
m
dx
d
ψ
ψ
h
(
)
x x
II
eD eC x
γ γ
ψ

+ =
(
)
jkx
III
Ge x=
ψ
0
2
2 2
2
= +
III
III
E
m
dx
d
ψ
ψ
h

Dr. Hatem El-Refaei 29
Potential barrier of 
finite
height and 
finite
width
M
First set of boundary conditions at x=0
(
)
(
)
0 0
=
=
=
x x
II I
ψ
ψ
D C BA
+
=
+
0 0= =
=
x
II
x
I
dx
d
dx
dψ ψ
D C jkB jkA
γ
γ

=

M
Second set of boundary conditions at x=a
(
)
(
)
ax ax
III II
=
=
=
ψ
ψ
ax
III
ax
II
dx
d
dx
d
= =
=
ψ ψ
ika a a
eG eD eC= +

γ γ
ika a a
eGik eD eC= −

γ γ
γ γ

Dr. Hatem El-Refaei 30
Potential barrier of 
finite
height and 
finite
width
D C BA
+
=
+
(1)
D C jkB jkA
γ
γ

=

(2)
ika a a
eG eD eC= +

γ γ
(3)
ika a a
eGik eD eC= −

γ γ
γ γ
(4)
M
Eq. (3) ×γ+ Eq. (4) to eliminate D.
M
Eq. (3)×(-γ) + Eq. (4) to eliminate C.
( )
G e
jk
C
a jk
γ
γ
γ

+
=
2
(5)
( )
G e
jk
D
a jk
γ
γ
γ
+

=
2
(6)

Dr. Hatem El-Refaei 31
Potential barrier of 
finite
height and 
finite
width
M
Eq. (1) ×
jk
+ Eq. (2) to eliminate B
(
)
(
)
D jk C jk jkA
γ
γ

+
+
=
2
(7)
M
Substitute from eq. (5) and (6) into (7), we get an equation of A 
and G only.
( )
( )
( )
( )
[
]
G e jk e jk jkA
a jk a jk
γ γ
γ γ
γ
+ −
− − + =
2 2
2
1
2
(8)
D C BA
+
=
+
(1)
D C jkB jkA
γ
γ

=

(2)
ika a a
eG eD eC= +

γ γ
(3)
ika a a
eGik eD eC= −

γ γ
γ γ
(4)

Dr. Hatem El-Refaei 32
Transmission and Reflection Coefficients
M
It is an assignment to show that the transmission coefficient is
givenby
( )
( )
a
E UE
U AA
GG
T
o
o
γ
2
2
sinh
4
1
1
1

+
= =


M
Also it is an assignment to show that the reflection coefficient
isgivenby
( )
( )
( )
( )
a
E UE
U
a
E UE
U
AA
BB
R
o
o
o
o
γ
γ
2
2
2
2
sinh
4
1
1
sinh
4
1

+

= =

Dr. Hatem El-Refaei 33
Transmission and Reflection Coefficients
M
After proving both relations, it will be clear to you that
1
=
+
T
R
M
Which is logical as an incident particle is either reflected or 
transmitted. M
You may need to use the following relations
( )
2
sinh
z z
e e
z


=
( )
2
cosh
z z
e e
z

+
=
(
)
(
)
1 sinh cosh
2 2
= −z z

Dr. Hatem El-Refaei 34
Transmission coefficient versus barrier width
E
One notices that shrinking the barrier width by half results in a dramatic
increaseinthetransmissioncoefficient.Itisnota linear relation.
E
Also doubling the particle energy results in exponential in crease in the
transmissioncoefficient.
An electron is tunneling through 1.5 eV barrier
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 0.25 0.5 0.75 1 1.25 1.5
Energy (e.V)
Transmission Coffecient
a=0.5 nm a=1 nm a=2 nm a=4 nm

Dr. Hatem El-Refaei 35
Reflection coefficient versus barrier width
An electron is tunneling through 1.5 eV barrier
0
0.2
0.4
0.6
0.8
1
1.2
0 0.25 0.5 0.75 1 1.25 1.5
Energy (e.V)
Reflection Coffecient
a=0.5 nm a=1 nm a=2 nm a=4 nm
E
NoticethatR=1-T

Dr. Hatem El-Refaei 36
Plotting the wave function
M
Now we have found all
constantsintermsofA. M
We can plot the shape of
the wave function in all
regions.
M
One would expect that as the barrier gets smaller in height
and/or narrower in width more particles will be able to cross
thebarriertotheotherside.
M
Thisresultsinahighertransmissioncoefficient“T”,andalsoa
largeramplitudeforthetransmittedwave“G”. M
Check:
http://phys.educ.ksu.edu/vqm/html/qtunneling.html
G

Dr. Hatem El-Refaei 37
Contradiction with Classical Mechanics
M
This results are in contradiction with the classical mechanics
which predicts that is the particle’s energy is lower than the
barrier height, the particle overcome the barrier and thus can
notexistintherighthandside.
G

Dr. Hatem El-Refaei 38
Remember classical mechanics
A man at rest here
Will never be able to 
pass this point
So he can’t 
exist here
Tags