Physics for Health Sciences Slides - Copy.pdf

fortuneyayra1 15 views 189 slides Feb 26, 2025
Slide 1
Slide 1 of 195
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195

About This Presentation

PHYSICS FOR HEALTH SCIENCES


Slide Content

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
INTRODUCTION

Physicsisthestudyofmatterandenergy,andtheir
interactions.
Measurementistheprocessofassigninganumericalvalueto
aphysicalquantity.
Themeasurementofanyphysicalquantityinvolves
comparisonoftheunknownquantitywithastandard.For
example,lengthsaremeasuredagainstastandardrule,and
timesagainstastandardclock.
Ingeneral,aphysicalquantitywillhavebothanumberanda
unitattachedtothenumber.Thenumberitselfisinsufficient.
Forexample,1meterand1footarequitedifferentquantities.
Thesolutiontoallphysicsproblemsmustincludeunits.

Adimensionisaphysicalquantitythatcanbemeasured.
Dimensiondenotesthephysicalnatureofquantity.Aunitisa
particularwaytoassignanumericalvaluetoadimension.A
quantitycanbemeasuredinseveralunits.
Forexample,length(L)isadimension,andmeter(m)isthe
SIunitoflength.
Allunitsforthesamedimensionarerelatedtoeachother
throughaconversionfactor.Theunitsofaquantitytellsus
thekindofquantityitis.
Thedimensionsofmass,lengthandtimearedenotedbyM,L
andTrespectively.
Thedimensionsofanyphysicalquantitycanbeexpressedin
termsofM,LandTonly.

Allthetermsofanyequationmusthavethesame
dimensions.
Onlyquantitieswiththesamedimensionscanbeaddedor
subtractedorplacedequaltooneanother.
Thesevenfundamentalorprimarydimensionsarelength,
mass,time,temperature,electriccurrent,amountoflightand
amountofmatter.
Massisthequantityorameasureofthequantityofmatterin
abody.Itisameasureoftheinertiaofabody.TheSIunitof
massisthekilogram(kg).
Volumeistheamountofspaceoccupiedbyabodyoran
object.TheSIunitofvolumeiscubicmeters(m
3
).

Avectorquantityisanyquantity,whichhasbothmagnitude
anddirection.
Avectorquantityconveysbothmagnitudeanddirection.The
simplestvectorquantityisdisplacement.
Displacementissimplythechangeinthepositionofan
object.
Ascalarquantityhasmagnitudeonly.Ascalarquantityisa
quantitythatcanbedescribedbyasinglenumber.The
numbertellsusthesizeofthequantity.
Commonexamplesofscalarquantitiesaretemperatureand
mass.Forexample,themassofapatientis70kg.The
number70tellsusthesizeofthemass.Thekgistheunitof
measurement.

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
MOTION IN A STRAIGHT LINE

Thepositionofanobjectreferstothelocationoftheobject
relativetoachosenreference.
Anobjectissaidtobeinmotionwhenitspositionchanges
withtime.
Mechanicsisthestudyoftherelationshipamongforce,
matterandmotion.Mechanicsdealswiththestudyof
stationaryandmovingobjectsundertheinfluenceofforces.
Matterisanythingthathasweightandoccupiesspace,anda
forceiseitherapushorapull.
Thebranchofmechanicsthatstudiesobjectsatrestiscalled
statics.

Dynamicsisthebranchofmechanicsthatdealswithobjects
inmotion.Dynamicsisconcernedwiththeeffectsofforceson
motion.
Thebranchofmechanicsthatisconcernedwiththe
descriptionofmotionwithoutregardtoitscausesisknownas
kinematics.Thus,kinematicsisthestudyofmotionwithout
consideringitscauses.
Distancereferstothelengthofapathfollowedbyanobject.
Thedisplacementofanobjectisdefinedasthechangein
positionoftheobjectinsometimeinterval.Itisanobject’s
distanceanddirectionfromitsstartingposition.

Displacementisavectorquantitythatpointsfromanobject’s
initialpositiontoitsfinalposition,anditsmagnitudeequals
theshortestdistancebetweenthetwopoints.
Thedisplacementofanobjectdependsonlyonthestarting
andendingpositions,andnotonthepathtakenbytheobject.
Distanceisanexampleofascalarquantity,whereas
displacementisanexampleofavectorquantity.
Ingeneral,avectorquantityrequiresthespecificationofboth
directionandquantity.Bycontrast,ascalarquantityhasa
numericalvalueandnodirection.
Themassofapatientisascalarquantity,whereasthe
weight,theforceofgravityonthepatient,isavectorquantity.

Theaveragespeedofanobject,ascalarquantity,isdefined
astotaldistancedividedbythetotaltimeintervalrequiredto
travelthatdistance.
Theaveragespeedofanobjectisnotthesameasitsspeed
atanyparticularinstantoftime.Speedatanyparticular
instantoftimeiscalledinstantaneousspeed.
Averagevelocityofanobjectisdefinedasdisplacement
dividedbythetimeintervalduringwhichthedisplacement
occurs.
Themagnitudeofaveragevelocityisnotaveragespeed.
tan

dis e
AverageSpeed
time


Displacement
AverageVelocity
Time

Thevelocityofanobjectataparticularinstantintimeis
calledinstantaneousvelocity.
Theinstantaneousvelocityofanobjectindicateshowfastthe
objectismovingandthedirectionofmotionateachinstantof
time.Themagnitudeofinstantaneousvelocityiscalled
instantaneousspeed.
Inphysics,thereisacleardistinctionbetweenspeedand
velocity.Speed,ascalarquantity,istherateatwhichan
objectchangesitsposition.Incontrast,velocity,avelocity,a
vectorquantitydenotesthespeedofanobjectwithits
associateddirection.
Theaccelerationofanobjectisthetimerateofchangeofits
velocitywithtime.

Theaverageaccelerationofanobjectisdefinedasthe
changeinvelocitydividedbythetimeintervalduringwhich
thatchangeoccurs.
Instantaneousaccelerationistheaccelerationataparticular
instantintime.


ChangeinVelocity
AverageAcceleration
Time

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
EQUATIONS OF UNIFORMLY
ACCELERATED MOTION

Uniformaccelerationmeansconstantacceleration.
2
2 2
(1)
1
( ) (2)
2
1
(3)
2
2 (4)
v u at
s u vt
s ut at
v u as
  
  
  
  

tan
u initialvelocity
v finalvelocity
s dis ce
t time
a acceleration




Equation(1)enablesustodeterminethevelocityatany
instantoftime,giventheinitialvelocityandtheconstant
acceleration.
Equation(2)simplysaysdistanceisequaltoaveragevelocity
timestime.Formotioninastraightline,distance,lengthof
travel,isthesameasmagnitudeofdisplacement.
Equation(3)givesthepositionordistanceoftheobjectatany
instantoftime,giventheinitialvelocity.
Themostimportantproblemtowhichtheequationsof
constantaccelerationapplyisthatofthefreefallofobjects
neartheearth.

Intheabsenceofair,allobjectsinthesamelocationfallto
earthwiththesameacceleration.Thisaccelerationiscalled
accelerationduetogravity.
Thevalueofthisaccelerationvariesslightlywithgeographical
location,butanywhereonearth,themagnitudeis
approximately9.8m/s
2
.
Thedirectionoftheaccelerationduetogravityisdownward
towardstheearth.
Forobjectsfallingverticallydownwards,itispositive.For
objectsmovingverticallyupwards,itisnegative.

1.2 / 8.3 /
5 .
. min
.
Anobjectisobservedtoincreaseits
velocityfrom m sto m sina
timeof sCalculateitsaverage
accelerationDeter ehowfarit
travelswhileaccelerating

1.2 /

8.3 /
5

u initialvelocity
ms
v finalvelocity
ms
t time
s
a averageacceleration






2
8.3 / 1.2 /
5
1.42 /
v u
a
t
ms ms
s
ms





1
( )
2
1
(1.2 / 8.3 /)(5)
2
23.75
s u vt
ms ms s
m
 
 

2 2
2
,
2
1
2
alternatively
v u
s
a
OR
s ut at


 

2

21 / .
,
int ?

10 / .
Abodyisthrownverticallyupwards
withaninitialvelocityof m sHow
highwillitgo andwhenwillitreturn
tothepo ofprojection Assumethe
valueof accelerationduetogravityis
m s

2
.

21 /

0 / ( )
10 / ( )
Considertheupwardmotion
u initialvelocity
ms
v finalvelocity
ms momentaryrest
a acceleration
ms negativebecauseof upwardmotion







2 2
2 2
2
2
tan ( )
2
(0 / ) (21 / )
2( 10 / )
22.05
( int)
0 / 21 /
10 /
2.10
s dis ce howhightheobjectgoes
v u
a
ms ms
ms
m
t time toreachthehighestpo
v u
a
ms ms
ms
s













2
2 2
.

0 / ( )
tan ( int )
22.05
int
1
2
1
22.05 (0 / ) (10 / )
2
2
Consider thedownward motion
u initial velocity
ms momentaryrest
s dis ce fromhighest topo of projection
m
t timetoreturntoprojectionpo
s ut at
m ms t ms t
t





 
 
.1

2.1 2.1
4.2
s
T timetoreturn
s s
s

 

2

2.5 .
- ?
10 / .
Kangarooscanjumpverticallyupwards
toaheightof cmWhatistheir
take offvelocity Assumethevalueof
accelerationduetogravityis ms

2
2 2
2 2
10 /
tan ( )
2.5

0 / ( )
( - )
2
(0 /) 2( 10 / )(2.5 )
7.07 /
a acceleration
ms
s dis ce height
m
v finalvelocity
ms momentaryrest
u initialvelocity take off velocity
u v as
ms ms m
u ms







 
  

.
12 cov 100 ,
?
,
Anobjectmovesinastraightlinewith
uniformaccelerationIfitstartsfrom
restandtakes sto er m what
istheacceleration Ifitcontinueswith
thesameacceleration howlongwillit
ta cov 100
200 ?
keto erthenext mandwhat
willbeitsvelocityafterthe m

2
2
2

0 / ( )
tan
100
cov 100
12
1
2
1
100 (0 / )(12 ) (12 )
2
1.4 /
u initialvelocity
ms startsfromrest
s dis ce
m
t timeto erfirst m
s
a acceleration
s ut at
m ms s s a
a ms







 
 

2
tan
100 100
200
1.4 /
cov 200
s dis e
m m
m
a acceleration
ms
t timeto er mfromrest

 



2
2 2
1
2
1
200 (0 /) (1.4 / )
2
16.9
cov 100
16.9 12
4.9
s ut at
m mst ms t
t s
T timerequiredto erthenext m
s s
s
 
 


 

2
2 2
2 2
1.4 /
tan
200

0 /

2
(0 /) 2(1.4 / )(100 )
23.7 /
a acceleration
ms
s dis ce
m
u initialvelocity
ms
v finalvelocity
v u as
ms ms m
v ms







 
 

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
NEWTON’S LAWS OF MOTION

Incommonusage,aforceisapushorapull.Moreformally,a
forceisanythingthatcausesachangeinthevelocityofan
object.
Contactforcesareforcesthatarisefromthephysicalcontact
betweentwoobjects.Anexampleofacontactforceisthe
forceexertedbyyourfeetonthefloor.
Fieldforcesdonotinvolvephysicalcontactbetweenobjects,
andtheyactthroughemptyspace.Anexampleisthe
gravitationalforceofattractionbetweentwoobjects.Another
exampleiselectricforcethatelectricchargeexertson
another.
Newton’sfirstlawofmotionstatesthatanobjectcontinuesin
astateofrestorinastateofmotionatconstantvelocity,
unlesscompelledtochangethatstatebyanetaforce.

Newton’sfirstlawofmotionisalsocalledthelawofinertia.
FromNewton’sfirstlaw,whennoforceactsonanobject,the
accelerationoftheobjectiszero.
Newton’sfirstlawofmotionindicatesthatanobjectwill
remainatrestorinmotionwithconstantvelocityunlesssome
externalforceactsonit.
Constantvelocitymeansconstantspeedinaconstant
direction.Thus,accordingtoNewton’sfirstlawofmotion,the
objectcannotchangespeedanddirectionunlessanetforce
actsonit.
Quantitatively,theinertiaofanobjectismeasuredbyits
mass.Atrainhasmoreinertiathanabicycle.

Inertiaisthenaturaltendencyofanobjecttoremainatrestor
inmotionataconstantvelocity.Themassofanobjectisa
quantitativemeasureofinertia.Thus,atrainhasagreater
tendencytoremainatrestthanabicycle.
Pleasenotethatthemassofanobjectisindependentofits
location.
Inertiaistheinherenttendencyofanobjecttoresistany
attempttochangeitsvelocity.
FromNewton’sfirstlawofmotion,aforcecanbedefinedas
thatwhichcausesachangeinmotionofanobject.
ThenetforcementionedinNewton’sfirstlawofmotionisthe
vectorsumofallforcesactingontheobject.

Newton’ssecondlawofmotiondealswithwhathappens
whenanetforceactsonanobject.
Newton’ssecondlawofmotionstatesthatwhenanet
externalforceactsanobject,theaccelerationthatresultsis
directlyproportionaltothenetforceandhasamagnitude
inverselyproportionaltothemassoftheobject.
Thedirectionoftheaccelerationisthesameasthedirection
ofthenetexternalforce.
ThenetforceinNewton’ssecondlawofmotionincludesonly
theforcesthattheenvironmentexertsontheobject.Such
forcesarecalledexternalforces.
Massisthatpropertyofanobjectthatspecifieshowmuch
resistanceanobjectexhibitstochangesinitsvelocity.

Newton’ssecondlawofmotioncanbeexpressed
mathematicallyasfollows.
Thenetforceactingonanobjectisthevectorsumofall
forcesactingontheobject.Itissometimesreferredtoastotal
force,resultantforce,orunbalancedforce.
TheSIunitofforceistheNewton(N).


F ma
F netexternalforce
m massof object
a acceleration




2
1 1 /N kgms

Themassofanobjectisanintrinsicproperty,whichcanbe
takenasabasicmeasureoftheamountofmatteritcontains,
andasameasureofitsinertia.
Themassisafundamentalconstantforagivenobject,which
doesnotchangewithotherphysicalpropertiesandwitha
changeinitsstateofmotion.
Themomentumofanobject,avectorquantity,isdefinedas
theproductofitsmassandvelocity.
Newton’ssecondlawofmotioncanalsobestatedasthenet
externalforceactingonanobjectisequaltotherateof
changeofmomentumoftheobject.

Forceisavectorquantity,andthereareoftenseveralforces
actingindifferentdirectionsonasingleobject.
TheforceinNewton’ssecondlawofmotionisthenetforce
thatisthesumofallforcesactingontheobject.
Infindingthesumofforcesactingonanobject,itis
necessarytotakeintoaccounttheirdirections.Thisiscalled
vectorsum.
Newton’sthirdlawofmotionstatesthatwheneveroneobject
exertsaforceonasecondobject,thesecondobjectexertsa
forcebackonthefirstobjectthatisequalinmagnitudeand
oppositeindirection.
Newton’sthirdlawofmotionissometimesstatedas:forevery
action,thereisanequalandoppositereaction.

2
1,100
0.15 / .
tan 150 ,

?
Acaravanof mass kgistowedby
acarwithanaccelerationof ms
If theresis cetomotionis N what
istheforceexertedbythecarthroughthe
towbar

2
2

1,100
0.15 /
tan
150

(1,100 )(0.15 / ) 150
315
m massof caravan
kg
a acceleration
ms
R resis cetomotion
N
F forceexertedbycar
F R ma
F ma R
kg ms N
N







 
 
 

tan 50

( ).
2.0 1.5,
?
Acons thorizontalforceof Nacts
onanobjectonasmoothhorizontalplane
nofriction If theobjectstartsfromrest
andisobservedtomove min s what
isthemassof theobject

2
2
50
0 / ( )
tan 2.0
1.5
1
2
1
2.0 (0 /)(1.5) (1.5)
2
F force N
u initialvelocity ms startsfromrest
s dis ce m
t time s
a acceleration
s ut at
m ms s s a
 
 
 
 

 
 

2
2
1.78 /

50
1.78 /
28.10
a acceleration
a ms
m massofobject
F
a
N
ms
kg





Theearthattractsallobjectstoitself,andobjectsfall
downwardbecauseofgravity.
Everyobjectexertsanattractiveforceoneveryotherobject.
Newton’slawofuniversalgravitationstatesthatthe
magnitudeoftheattractiveforcebetweentwoobjectsis
directlyproportionaltotheproductoftheirmassesand
inverselyproportionaltothesquareofthedistancebetween
them.
Mathematically,themagnitudeoftheattractiveforcebetween
twoobjectsisgivenby:

1 2
2
1
2
11 2 2



tan
tan
6.674 10 /
Gmm
F
R
F magnitudeof attractiveforce
m massof objectone
m massof objecttwo
R dis ceorseparationbetweenobjects
G universalgravitationalcons t
Nm kg







 

Theweightofanobjectonearthisthegravitationalforcethe
earthexertsontheobject.Theweightofanobjectexists
becauseofthegravitationalpulloftheearth.
Theweightalwaysactsdownward,towardthecenterofthe
earth.
Themagnitudeoftheweightofanobjectonthesurfaceof
theearthisgivenby:



W mg
W magnitudeof weight
m massof object
g accelerationduetogravity



Thevalueofaccelerationduetogravityonthesurfaceofthe
earthisgivenby:
Massisaquantitativemeasureofinertia.Therefore,massis
anintrinsicpropertyofmatteranddoesnotchangeasan
objectismovedfromonelocationtoanother.
Incontrast,weightisthegravitationalforceactingonan
objectandcanvarydependingonhowfartheobjectisabove
theearth’ssurface.
2
2
9.80 /
tan


E
E
E
E
GM
g ms
R
G universal gravitational cons t
M massof earth
R radiusof earth
 


Theweightofanobjectisproportionaltothemassofthe
object,butitisdistinctfromit.
Massisafundamentalmeasureofanobject’sinertiaandthe
amountofmatterpresentinit.Itdoesnotchangewiththe
positionoftheobject.
Incontrast,theweightofanobjectvariesfromlocationto
location.
However,thesevariationsareusuallyinsignificant.
Itisincorrecttosayapatientweighs70kg.Weightisaforce
andismeasuredinNewtons(N).

2

100 ?
100
(100 )(9.80 / )
980
Whatistheweightofamanof
mass kg
m kg
W mg
kg ms
N



Theforceofgravityactsonallpartsofanextendedobject.
Eachpartexperiencesitsindividualforce.
Alltheseforcesmustbeovercomeiftheobjectistobelifted.
Thepointatwhichalltheforcesofgravitymaybeconsidered
tobeconcentratedforpurposesofbalancingandliftingis
calledcenterofgravityorcenterofmass.
Thecenterofgravityofasolidobjectisthesinglepointat
whichtheforceofgravitycanbeconsideredtoact.
Forauniform,symmetricobject,thecenterofgravityisatthe
geometriccenter.Forexample,thecenterofgravityofa
uniformbarisatitscenter.

Tensionisthetypeofforcewhichexistsinthebodyofa
flexiblecable,string,orrope.
Thecableorropeisassumedtobeinfinitelyflexible,and
hencenolateralforcesaresupported.
Anyforce,whichisnotdirectedalongcableresultsinbending
ofthecable,andhencetheonlyforces,whichexistinsidethe
cablearethosedirectedalongthecable.
Thecableisalsoassumedtobeinelastic:itdoesnotstretch,
anditisunbreakable.
Sincethecableisassumedtobeflexible,itcanonlypulland
onlyexertsaforcealongitslength.

Staticsisthestudyofobjectsinequilibriumsuchasbuildings,
bridgesorpatientsintraction.
Anobjectisinequilibriumwhenitsaccelerationiszero.An
objectinmotionwithaconstantvelocityisalsosaidtobein
equilibrium(thistypeofequilibriumiscalleddynamic
equilibrium).
Anobjectissaidtobeinequilibriumifthesumofforces
actingonitiszeroandthesumofthetorquesexerteduponit
iszero.
Torqueistheturningeffectofaforce.
Anyobject,whichisbalancedandremainsinafixedposition
issaidtobeinstaticequilibrium.

Therearetwoconditionsforstaticequilibrium:First,sumof
upwardforcesmustequalsumofdownwardforces,andsum
ofrightforcesmustequalsumofleftforces.Second,sumof
torquesaboutanypointmustequalzeroi.e.sumofclockwise
torquesmustequalsumofcounterclockwisetorques.
Therateatwhichanobjectinequilibriumisrotatingcannot
change.Tochangetherateofrotationrequirestheapplication
ofatorque.Torqueistheeffectivenessofaforceinproducing
rotation.Itistheturningeffectofaforce.
Threefactorsdeterminethetorqueproducedbyaforce.First,
themagnitudeoftheforce.Second,thedirectionoftheforce
(whichdeterminesthedirectionofrotation).Third,the
distancebetweenthepointofapplicationoftheforceandthe
pivotpoint.

Torqueistheproductoftheperpendicularcomponentofthe
forceappliedtoanobjectandthedistanceofthepointofthe
applicationoftheforcefromthepivot.
Foranobjecttobeinequilibrium,itmustsatisfytwo
conditions:thenetexternalforceactingontheobjectmust
equalzero,andthenetexternaltorqueappliedtotheobject
mustequalzero.

tan int

Torque F d
F perpendicularcomponentof appliedforce
d dis cefromthepivottothepo of
applicationof theforce
 

Aforceisavectorquantitysinceithasbothmagnitudeand
direction.
Vectoranalysisorvectorsumisusedtohandleforcesthat
arenotsimplyparallelorperpendiculartoeachother.
Itissometimesconvenienttosplitorbreakasingleforceinto
twoforceswhosecombinedorresultanteffectisequivalentto
thatofthesingleforce.Thatis,thesumofthetwoforces
equalstheoriginalforce.
Thistechniqueorprocessiscalledprojectionorresolutionof
aforceintoitscomponents.Thetwoforcesarecalled
componentsoftheoriginalforce.
Forconvenience,aforceisusuallyresolvedintohorizontal
andverticalcomponents.

Thecomponentofaforceinanydirectionistheproductof
themagnitudeoftheforceandthecosineoftheangle
betweentheforceandthedirection.


x
x
y
y
F horizontalcomponent
F FCos
F verticalcomponent
F FSin





Wheneverthereisrelativemotionbetweentwosurfaces,
whichareincontact,therewillbeaforcewhichresiststhis
motion.Thisforceiscalledfriction.
Frictionisaforcewhichresistsmotion.Thesizeofthe
frictionalforcedependsonthenatureofthetwosurfaces.
Besidesthenatureofthesurfaces,thefrictionalforce
dependsmainlyupontheamountofforcepressingthetwo
surfacestogether.
Thefrictionalforceisproportionaltotheforceexertedbyone
substanceonanotherperpendiculartothesurfacebetween
them.Thisforceiscalledthenormalforce.

Therearetwotypesoffriction.Thesearestaticfrictionand
kineticfriction.
Staticfrictionisthefrictionbetweentwoobjects,whichare
notmovingrelativetooneanother.
Incontrast,kineticfrictionisthefrictionbetweentwoobjects,
whicharemovingrelativetooneanother.
Frictionalforcesaregenerallylessforslidingobjectsthanfor
stationaryobjects.
Thefrictionalforcebetweentwosurfacesisproportionalto
theforcepressingthesurfacestogether,whichiscalledthe
normalforce.Thenormalforceisatrightanglestothe
surface.

Insummary,kineticfrictionisfrictionbetweenslidingor
slippingsurfaces.Staticfrictionisfrictionbetweenstationary
surfaces.





k k N
k
k
N
S
s
F F
F kineticfriction
Coefficientofkineticfriction
F normalreaction
F staticfriction
Coefficientofstaticfriction








Consideranobjectrestingonaninclinedsurface.

c
angleof inclination
W mg weightof object
mgSin Componentof weightparallelto
surface
mgCos Componentof weightperpendicular
tosurface
F reactionforceproducedbysurface
thatbalancesweightof o




 



bject

,
c
c
N Componenntof F perpendicular
tosurface
normalforce
f Componentof F paralleltosurface
frictionalforce
If theobjectisstationaryontheinclined
surface then
N mgCos
f mgSin







2
10 , ?
,
3 ?
If anobjectof mass kgisactedupon
byaforceof N whatistheacceleration
If itisinitiallyatrest whatwillbeits
velocityafter s

2
2
10
10
2
5 /
m massof object kg
F force N
a acceleration
F
m
N
kg
ms
 
 




2
0 /
3

0 / (5 / )(3)
15 /
u initialvelocity ms
t time s
v finalvelocity
ms ms s
ms
 
 

 

2

10
. .

10 / .
Achildandbasketwithatotalmassof
kgaresuspendedfromascalebya
cord Calculatethetensioninthecord
Assumeaccelerationduetogravityis
ms

2
2


10

(10 )(10 / )
100

,
0 /
'
0
Let T tensioninthecord
m massof babyand basket
kg
W weight of babyand basket
mg
kg ms
N
Sincethebabyand basket are
not accelerating
a acceleration ms
fromNewton sSecond Law
T W







 
 
100T W N 

8.0
. 30
45 .
.

Twochildrenpullinoppositedirections
anobjectofmass kgonasmooth
surfaceOneexertsaforceof Nand
theotheraforceof N Bothpull
horizontallyCalculatetheacceleration
oftheobj.ect

1
2

. ,



30
45

N
Therearefourforcesactingonthe
object Theseare
W mg weightof object
F normalreactionof thesurface
ontheobject
F forceexerted bychild one N
F forceexerted bychild two N
Sincetheobj
 

 
 

, ' sec
,
. ,
N
ectisnotmovingupor
down thenfromNewton s ond
lawof motion thenetforceinthe
verticaldirectioniszero Therefore
F W

2 1
2 1
2 1
2

' sec
45 30
8.0
1.875 /
H
H
LetF netforceinhorizontaldirection
F F
fromNewtons ondlaw
F ma
F F ma
F F
a
m
N N
kg
ms

 

 




2
50.0
.
90.0 .
0.35 / ,

Anurseexertsahorizontalforceof N
onagurneywithapatientonit Thegurney
andpatienthaveatotalmassof kg If
thegurneyandpatientaccelerateat ms
whatisthemagnitudeof
?
thefrictionalforce
actingonthegurney

2
2
50.0

90.0
0.35 /
' sec ,
50.0 (90.0 )(0.35 / )
18.5
R
R
R
F forceexertedbynurse N
F frictionalforce
m massgurneyandpatient kg
a acceleration ms
fromNewtons ondlaw
F F ma
F F ma
N kg ms
N
 

 
 
 
 
 

2
70.0 lim .
lim ,
.
0.20 / ,
.
A kggymnastc bsaropeIf the
gymnastc bsatauniformspeed
calculatethetensionintheropeIf the
gymnastacceleratesupwardat ms
calculatethetensionintheropeAssume
accele
2
10 / .rationduetogravityis ms

2


70.0


, 0.
' sec ,
0
(70.0 )(10 / )
700
LetT tensioninrope
m massof gymnast
kg
W weightof gymnast mg
If thegymnastcimbsatunifiom
speed thenaccelerationis
FromNewtons ondlaw
T W
T W mg
kg ms
N



 
 
 

2
2 2
0.20 /
' sec ,
(70 )(0.20 / ) (70 )(10 / )
714
a acceleration ms
FromNewtons ondlaw
T W ma
T ma W
T ma mg
T kg ms kg ms
N
 
 
 
 
 

2
1,500
0.50 / .
125 .
?

Acarpullinga kgtrailerproduces
anaccelerationof m s Thefrictional
forceinthewheelsof thetraileris N
Whatforceisthecarexertingonthetrailer
Whatforceisthetrailerex ?ertingonthecar

2
2
1,500
0.50 /
125

' sec ,
(1,500 )(0.50 / ) 125
875

R
R
R
T
m massof trailer kg
a acceleration ms
F frictionalforce N
LetF forceexerted bycarontrailer
fromNewton s ond law
F F ma
F ma F
kg ms N
N
LetF forceexerted b
 
 
 

 
 
 


' ,
875
T
ytraileroncar
fromNewton sthird law
F N

ker ,
, 250
.
?
,
Twowor spushhorizontally inthesame
direction awoodencrateof mass kg
thatisonawoodenfloor Whattotalforce
musttheyexerttostartthecratemoving
Oncemoving oneexertsaforceo 500
600 .
.
.5
0.3.

f N
andtheotheraforceof N Calculate
theaccelerationof thecrate Assume
coefficientof staticfrictioniso and
coefficientof kineticfrictionis Take
accelerationduetogravitya
2
10 / .s ms

1
2
250


ker 1
ker 2
0.5
N
s
k
m massof woodencrate kg
W weightof woodencrate
mg
F normalreactiononwoodencrate
W
mg
F forceexertedbywor
F forceexertedbywor
coefficientof staticfriction
coefficien


 







 
 0.3tof kineticfriction

ker
,

.
(0.5)(
s
k
s
R
s N
R
k N
T
T R s N s
F staticfriction
F
F kineticfriction
F
LetF totalforceexerted bywor s
Forthecratetostartmoving the
totalforcemustbeatleastequalto
thestaticfriction
F F F mg


 





  

2
250 )(10 / )
1,250
kg ms
N

1
2
1 2
1 2
1 2
2
,
.
500
600
' sec ,
500 600 (0.3)(250 )(10 / )
250
k
k
net
R
R
k N
Oncethecratestartsmoving thefriction
changesfromstatictokinetic
F N
F N
fromNewton s ond lawof motion
F ma
F F F ma
F F F
a
m
F F F
m
N N kg ms
k




  
 

 

 

2
1.4 /
g
ms

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
WORK, ENERGY AND POWER

Ifapersonexertsaforceonaboxanditmovesadistance
acrossthefloor,thepersondoesworkonthebox.
Theworkdoneonanobjectbyaforceisdefinedasthe
productofthecomponentoftheforceinthedirectionof
motionandthedistancemovedbytheobject
Pleasenotethatonlythecomponentoftheforceinthe
directionofmotionisusedincalculatingtheworkdone.



tan
W f d
W workdone
f componentof forceinthedirection
of motion
d dis ce
 


Workisascalarquantity,andtheSIunitofworkistheJoule
(J).
Theworkdoneonanobjectbyanetexternalforceisequalto
thechangeinkineticenergyoftheobject.Thisisknownas
thework-energyprinciple.
Energyisdefinedastheabilityorcapacitytodowork.Itisa
scalarquantityandismeasuredinJoules.
Energycantakeseveralformssuchasheatenergy,electrical
energy,chemicalenergy,nuclearenergyandmechanical
energy.
Theprincipleofconservationofenergystatesenergycannot
becreatedordestroyed,butcanbeconvertedfromoneform
toanother.

Mechanicalenergyisusuallydividedintotwoclasses:
potentialenergyandkineticenergy.
Potentialenergyistheenergypossessedbyanobjectdueto
itsshapeorposition.
Potentialenergyduetopositioniscalledgravitational
potentialenergy.Thegravitationalpotentialenergyofan
objectistheenergypossessedbyanobjectbyvirtueofits
positionrelativetothesurfaceoftheearth.
Forexample,apolytankontopofabuildinghasgravitational
potentialenergy.

Gravitationalpotentialenergyisoftenreferredtosimplyas
potentialenergy.
Kineticenergyistheenergypossessedbyanobjectbyvirtue
ofmotion.
Forexample,amovingcarhaskineticenergy.Incontrast,a
stationarycarhasnokineticenergy.




GPE mgh
GPE gravitationalpotentialenergy
m massof object
g accelerationduetogravity
h heightof object




Thekineticenergyofanobjectdependsonitsmassand
speed.
21
2



KE mv
KE kineticenergy
m massofobject
v speedofobject



Powerisdefinedastheamountofworkdoneperunittime.It
istherateatwhichenergyisusedorexpended.
Powerisascalarquantity,anditismeasuredinwatts(W).
Thehumanbodycanbethoughtofasanenergyconverter.
Thesourceofenergyforthehumanbodyischemicalenergy
(foundinfood),whichthebodyconvertsintomechanicalwork
andthermalenergy,andbackintostoredchemicalenergy
(fat).
Energy
Power
Time
Energy Power Time

 

0.025 tan 10.0
300 / ?
Whatforceisneededtostopanobjectof
mass kginadis ceof cmif
theobjecthasaspeedof ms

2 2
0.025
300 /
0 /

1 1
2 2
tan 10 0.10

m massofobject kg
u initialspeed ms
v finalspeed ms
KE changeinkineticenergy
mu mv
s dis ce cm m
LetF requiredforce
 
 
 
 
 
  

2 2
2 2
- ,
1 1
2 2
1 1
0.10 (0.025 )(300 / ) (0.025 )(0 / )
2 2
0.10 1,125
1,1250
fromthework energyprinciple
F s mu mv
F m kg ms kg ms
F m J
F N
  
  
 

100 .
tan 5.0 .
1.0 /
80
Anambulanceattendantpusheshorizontally
onagurneywithaforceof N Hestarts
fromrestandpushesforadis ceof m
Thefinalspeedis msandthemassof the
gurneypluspatientis k.
.
.
g Calculatethe
amountof workdoneagainstfriction
Calculatetheforceof friction

100
tan 5.0
0 /
1.0 /
80



R
f
R
f
F forceexertedbyattendant N
d dis ce m
u initialspeed ms
v finalspeed ms
m massof gurneypluspatient kg
W workdonebyF
F forcefriction
W workdoneagainstfriction
 
 
 
 
 


2 2
2 2
=100 5.0
500

1 1
2 2
1 1
(80 )(1.0 / ) (80 )(0 / )
2 2
40

,
500 40
460
R
f
f
W F d
N m
J
KE changeinKEof gurneypluspatient
mv mu
kg ms kg ms
J
fromtheprincipleof conservationof
energy
W J J
J
 


 
 
 

 

2 2 2 2
2
460
5.0
92

(1.0 / ) (0 / )
0.1 /
2 2(5.0 )
R
R
f R
f
R
W F d
W
F
d
J
m
N
thequestioncanalsobesolvedinthismanner
v u ms ms
a ms
d m
 



 
  

2
' sec ,
100 (80 )(0.1 / )
92
92 5.0
460
R
R
R
f R
fromNewtons ondlaw
F F ma
F F ma
N kg ms
N
W F d
N m
J
 
 
 

 
 

2

10 .
4 ?
10 / .
Acoconutfallstoearthfroma
heightof mHowfastisittravelling
whenitis mfromtheground Assume
accelerationduetogravityis ms

1
2
1 2
2 2
10.0
4.0

0 /


1 1
2 2
h initialheight m
h finalheight m
PE changeinpotentialenergy
mgh mgh
u initialspeed ms
v finalvelocity
KE changeinkineticenergy
mv mu
 
 
 
 
 

 
 

2 2
1 2

,
1 1
2 2
fromtheprincipleof
conservationof energy
PE KE
mgh mgh mv mu
 
  
 
2 2
1 2
2 2 2
1
( ) ( )
2
1
(10 / )(10.0 4.0 ) (0 /)
2
10.95 /
mgh h mv u
m ms m m m v ms
v ms
  
  

2
10
30 .
tan 20 .
10 / .
1.
Ablockof mass kgslidesdownaplane
inclinedat tothehorizontal Theforce
of frictionalongtheplaneisacons t N
Assumeaccelerationduetogravityis ms
Computetheaccelerati


.
2. ,
2.0 ?
onof theblock
downtheinclinedplane
Startingfromrest howlongdoesittake
theblocktomove mdownthetheplane

2
30
10


20
' sec ,
(10 )(10 / )
p
R
R
R
angleof inclination
m massof block kg
W mg weightof block
W componentof weightparalleltoplane
mgSin
F frictionalforce N
fromNewton s ond law
mgSin F ma
mgSin F
a
m
kg ms




  
 
 


 
 



2
30 20
10
3 /
Sin N
ms

2
2
2 2
3 /
0 /
tan 2.0
1
2
1
2.0 (0 /) (3 / )
2
0.385
a acceleration ms
u initialvelocity ms
s dis ce m
s ut at
m mst ms t
t s
 
 
 
 
 

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
FLUIDS AND PRESSURE

Afluidisanymaterialthathastheabilityorcapacitytoflow.
Thus,afluidiseitheragasoraliquid.
Pressureisdefinedasforceperunitarea.
TheSIunitofpressureisPascal(Pa).
Commonunitsofpressureareatmospheres(atm),mmHg
andTorr.
Force
pressure
Area

2
1 1 /Pa Nm
1 760 101,325
1 1
atm mmHg Pa
mmHg Torr
 

Gaugepressureispressuremeasuredrelativetoatmospheric
pressure.
Absolutepressureortotalpressureismeasuredrelativeto
vacuum.
Bloodpressureisgaugepressure.Forexample,ifthemean
arterialpressureofapatientis75mmHg,itmeansitis75
mmHgmorethanatmosphericpressure.


1 760
Total gauge atm
Total
gauge
atm
P P P
P totalorabsolutepressure
P gaugepressure
P atmosphericpressure atm mmHg
 


  

2
max , ,

max
140
25 .
Calculatethe imumforce inNewtons
exertedbythebloodonananeurysmin
theaortagiventhatthe imumblood
pressureis mmHgandtheareaof the
aneurysmis cm

4
4 2
2
2 2
2
2 2
2
3 2
140
760 101,325
140
140 101,325
760
1.867 10
1.867 10 /
25.0
10,000 1.0
25.0
25.0 1.0
10,000
2.50 10
pressure mmHg
mmHg Pa
mmHg
mmHg Pa
mmHg
Pa
N m
area cm
cm m
cm
cm m
cm
m



 
 
 


 
 

4 2 3 2
1.867 10 / 2.50 10
46.8
force
pressure
area
force pressure area
Nm m
N


 
   

Thepressureatadepthinafluidisduetotheweightofthe
columnoffluidabovethedepth.Thispressureiscalled
pressureduetothecolumnoffluid,andisagaugepressure.




depth
depth
P gh
P pressureatadepthdueto
columnof fluid
densityoffluid
g accelerationduetogravity
h depth






3

2.50
.
? 1,000 / .
1
CalculatethepressureinPaatadepth
of mduetowaterinaphysiotherapy
bathWhatisthetotalpressureatthat
depth Thedensityof wateris kgm
Assumeaccelerationduetogravityis
2
0 / .ms

3
2
3 2
2.50
1,000 /
10 /
(1,000 / )(10 / )(2.50 )
25,000
25,000 101,325
126,325
depth
Total depth atm
h depth m
densityof water kgm
g accelerationduetogravity ms
P gh
kgm ms m
Pa
P P P
Pa Pa
Pa


 
 
 



 
 

Pascal’sprinciplestatesthatanypressureappliedtoa
confinedfluidistransmittedequally(undiminished)toallparts
ofthefluid.
Archimedes’principlestatesthatanyobjectplacedinafluid,
eitherpartiallyorwholly(completelyorimmersed)will
experienceanupwardforceequaltotheweightofthefluidit
displaces.
Theupwardforceiscalledbuoyantforceorupthrust.
Thebuoyantforcemakesanobjectweighlesswhenitis
placedinafluid.
Theweightofanobjectinairiscalleditstrueweight.The
weightwhenplacedinafluidiscalledapparentweight.

B
B
B True App
True
App
F gV
F bouyantforceorupthrust
densityoffluid
V volumeofobjectinfluid
g accelerationduetogravity
F W W
W trueweight
W apparentweight







 

3
log
80.0
2.0 .
1,000 / .

Aphysio istmeasuresthemassof a
personinairtobe kgandhisapparent
masswhensubmergedinwatertobe kg
Thedensityof wateris kg m Calculate
thevolumeanddensityof theper.son

3
80.0
2.0
1,000 /

True
App
w
B w
B True App
m truemassof person kg
m apparentmassof person kg
densityof water kgm
LetV volumeof person
F gV
F W W


 
 
 


 

3
3
( )
( )
80.0 2.0
1,000 /
0.0780
True App w
True App w
True App w
True App
w
W W gV
gm gm gV
g m m gV
g m m
V
g
kg kg
V
kgm
m




 
 
 





3 3
3
80.0
1.02 10 /
0.0780
p
mass kg
kgm
volume m
   

Flowrateisdefinedasvolumeflowingperunittime.Volume
flowingperunittimeisproperlycalledvolumetricflowrate.
Flowratebetweentwopointsorregionsinapipeortube
(suchasabloodvessel)isdirectlyproportionaltothe
pressuredifferencebetweenthetwopointsandinversely
proportionaltotheresistancetoflow.

Volume
Flowrate
Time



tan
P
Q
R
Q flowrate
P pressuredifference
R resis cetoflow



 

Pressuredifferencecausesfluidstoflow.Fluidsflowfroma
regionofhighpressuretoaregionoflowpressure.
Theresistancetoflowiscausedbyfrictionbetweenthefluid
andthetube(pipe),andwithinthefluiditself.Frictioninfluids
iscalledviscosity.
Theviscosityofafluidisameasureofthickness.
Constrictionsandobstructionsinatubecausesresistanceto
flowtoincrease.


-sec
Q Av
Q flowrate
v averagevelocity
A cross tional



Forlaminarflowofanincompressiblefluid,threefactors
determinetheresistancetoflow:thelengthofthetube,radius
oftube,andtheviscosityofthefluid.
Theexpressionforcalculatingresistancetoflowforalaminar
flowiscalledPoiseuille’slaw.
4
8
tan

cos

L
R
r
R resis ce
L lengthof tube
vis ityof fluid
r radiusof tube








4
8


r
Q P
L
Q flowrate
P pressuredifference


 

 

3

50.0 / ,
1. , , .
2. cos , , .
3.
If theflowratethroughatubeisoriginally
cm s calculatethenewflowrate
if thepressuredifference P doubles
if thevis ityof thefluid doubles
if thelengthof thetube


, , .
4. , , .

.
L doubles
if theradiusof thetube r doubles
Assumethatineachcaseonlythefactor
mentioneddiffersfromtheoriginalconditions

4
2 2
1 1
2
2 1
1
' ,
8
,

. ,
fromPoiseuilleslaw
R
Q P
L
If allotherfactorsremainthesame
flowrateisdirectlyproportionalto
pressuredifferenceTherefore
Q P
Q P
P
Q Q
P


 




 

3
1
2
1
2 1
31
2
1
3
50.0 /


2
2
50.0 /
100 /
Q originalflowrate cm s
Q newflowrate
P originalpressuredifference
P newpressuredifference P
P
Q cm s
P
cm s
 

 
   

 

2 1
1 2
1
2 1
2
1
2 1
31
2
1
3
,

cos . ,
cos
cos 2
50.0 /
2
25 /
If allotherfactorsremainthesame
flowrateisinverselyproportional
tovis ity Therefore
Q
Q
Q Q
originalvis ity
newvis ity
Q cm s
cm s





 



 

 
 

2 1
1 2
1
2 1
2
1
2 1
31
2
1
3
,

. ,

2
50.0 /
2
25 /
If allotherfactorsremainthesame
flowrateisinverselyproportional
tolength Therefore
Q L
Q L
L
Q Q
L
L originallength
L newlength L
L
Q cm s
L
cm s

 

 
 

4
2 2
4
1 1
1
2 1
4
2
2 1 4
1
4
31
4
1
3
,

. ,

2
(2 )
50.0 /
800 /
If allotherfactorsremainthesame
flowrateisdirectlyproportionalto
thefourthpowerof radius Therefore
Q R
Q R
R originalradius
R newradius R
R
Q Q
R
R
cm s
R
cm s


 
 
 

3
2
20.0 /
100 0.50

25 O .

Aflowrateof cm sisobtainedthrough
atubeof length cmandradius cm
whenthereisapressuredifferenceof
cmH alongthetubeCalculatethenew
flowratewhenthefollowingchanges
, min
.
are
made assu gallotherfactorsremainthe
sameastheoriginalconditions

2
2
1. 350
.
2. 0.40 .
3.
40.0 O.
4.
50.0 O
A cmlongtubereplacestheoriginal
one
Thetuberadiusisdecreasedto cm
Thepressuredifferenceisincreasedto
cmH
Thepressuredifferenceisincreasedto
cmH andthe
0.20 .
radiusisdecreased
to cm

4
2 1
1 2
1
2 1
2
3
1
2
1
' ,
8
,

. ,
20.0 /

fromPoiseuille slaw
R
Q P
L
If all other factorsremainthesame
flowrateisinversely proportional
tolength Therefore
Q L
Q L
L
Q Q
L
Q original flowrate cm s
Q newflowrate
L origi


 

 
 


2
100
350
nal length cm
L newlength cm

 

3
2
3
2
4
2 2
4
1 1
4
2
2 1 4
1
1
2
100
20.0 /
350
5.71 /
,

. ,
0.50
cm
Q cm s
cm
Q cm s
If allotherfactorsremainthesame
flowrateisdirectlyproportionalto
thefourthpowerof radius Therefore
Q R
Q R
R
Q Q
R
R originalradius cm
R ne
 


 
 
 0.40wradius cm

4
3
2 4
3
2 2
1 1
2
2 1
1
1
(0.40 )
20.0 /
(0.50 )
8.19 /
,

. ,

cm
Q cm s
cm
cm s
If allotherfactorsremainthesame
flowrateisdirectlyproportionalto
pressuredifference Therefore
Q P
Q P
P
Q Q
P
P originalpressuredifferenc
 





 

 
2
2 2
25 O
40.0 O
e cmH
P newpressuredifference cmH

  

32
2
2
3
4
2 2 2
4
1 1 1
2
40.0 O
20.0 /
25 O
32 /
,


. ,
cmH
Q cm s
cmH
cm s
If all other factorsremainthesame
flowrateisdirectlyproportional to
bothpressuredifferenceand the
fourthpower of radius Therefore
Q P R
Q P R
Q
 


 



4
2 2
14
1 1
4
3 32
2 4
2
50.0 O (0.20 )
20.0 / 1.024 /
25 O (0.50 )
P R
Q
P R
cmH cm
Q cm s cm s
cmH cm
 

   

Forflowofanincompressiblefluidinatube,flowratemustbe
thesameinallpartsofthetube.
Whatflowsthroughthelargerpartofthetubealsoflows
throughthenarrowpartofthetube.Therefore,thefluid
movesfasterthroughthenarrowpartthanitdoesinthelarger
part.
1
2
1
2
1 1 2 2
1 1 1
2
sec 1
sec 2
sec 1
sec 2
,
sec 1
A areaat tion of tube
A areaat tion of tube
v averagespeed at tion of tube
v averagespeed at tion of tube
fromtheContinuityEquation
Av Av
Av Q flowrateat tion
A





 
2 2
sec 2v Q flowrateat tion 

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
HEAT AND TEMPERATURE

Thetemperatureofanobjectisanindicatoroftheaverage
kineticenergyofitsmolecules.
Thehigherthetemperature,thegreatertheaveragespeedof
itsmolecules.
Thetemperatureofanobjectdetermineswhetherthermal
energyorheatflowsintooroutofitwhenitisincontactwith
anotherobject.
Heatisdefinedasenergythatflowsasaresultof
temperaturedifference.
Heatistheenergythatistransferredfromonelocationto
anotherlocationasaresultofthetemperaturedifference
betweenthem.

Heatalwaysflowsfromanobjectofhighertemperaturetoan
objectoflowertemperaturetillthermalequilibriumisreached.
Heattransfercancausetemperaturechangeinanobject.
However,sometimesheatcanflowintooroutofanobject
withoutatemperaturechange.
Heattransfercanalsocausephasechangessuchasmelting,
boiling,freezingandcondensation.
Theamountofheatneededtocauseatemperaturechange
inobjectdependsonthemassoftheobject,theamountof
temperaturechange,andthespecificheatcapacityofthe
material/substanceoftheobject.

Thespecificheatcapacityofasubstanceistheamountof
heatrequiredtochangethetemperatureof1kgofthe
substanceby1Kor1
o
C.Notethatatemperaturechangeof1
Kisequivalenttoatemperaturechangeof1
o
C.
TheunitofspecificheatcapacityisJ/kg/KorJ/kg/
o
C.





Q mc T
Q heatenergyneededtocausea
temperaturechangeof T
m massof object
T temperaturechange
c specificheatcapacity
 



 

Theheatcapacityofsubstanceistheamountofheatneeded
tochangeitstemperatureby1Kor1
o
C.
TheSIunitofheatcapacityisJ/KorJ/
o
C.


.
H
H
C mc
C heatcpacity
m massof object
c specificheatcapacity



200
5 ?
4,200 / / .
Howmuchheatisneededtoincrease
thetemperatureof gramof water
by C Specificheatcapacityof
wateris Jkg C


200 0.2
5

4,200 / /
(0.20 )(4,200 / / )(5 )
4,200
m massof water gram kg
T temperaturechange C
c specificheatcapacityof water
Jkg C
Q mc T
kg Jkg C C
J
  
   

 
 
  

Energymustbeputintoasubstancetocausetomeltorboil.
Energymustbetakenoutofasubstancetocauseittofreeze
orcondense.
Energyusedtocauseaphasechangedoesnotcausea
temperaturechange.
Forexample,whenicemeltsat0
o
C,itbecomesliquidwater
at0
o
C.Whenwaterboilsat100
o
C,itbecomessteamat
100
o
C.Whenwaterfreezesat0
o
C,itbecomesiceat0
o
C.
Whensteamat100
o
Ccondenses,itbecomeswaterat100
o
C.
Energyassociatedwithphasechangeiscalledlatentheat
becauseitdoesnotproduceatemperaturechange.

Energymustberemovedtocausefreezingorcondensation.
Specificlatentheatoffusionisusedwhenthechangeof
phaseisfromsolidtoliquidandviceversa.
Specificlatentheatofvapourizationisusedwhenthechange
ofphaseisfromliquidtogasandviceversa.
Specificlatentheatoffusionistheamountofenergyrequired
tomeltorfreeze1kgofasolidorliquid.
Specificlatentheatofvapourizationistheamountofenergy
requiredtovapourizeorcondense1kgofasubstance.

tan
.
tan
tan
f
f
Q mL
Q amountof energyneededtomelt
orfreezeasubs cewithouta
changeintemperature
m massof subs ce
L specificlatentheatof fusionof subs ce



tan
.
tan

v
v
Q mL
Q amountof energyneededto
vapourizeorcondenseasubs ce
withoutachangeintemperature
m massof subs ce
L specificlatentheatof vapourization



5.0
20 100 ?

4,190 / /
2,257,000 / .
Whatheatisrequiredtoconvert kgof
waterat Ctosteamat C The
specificheatcapacityof wateris
Jkg Candthespecificlatentheat
of vapourizationof wateris Jkg
 

1 2
1


20 100
5.0

4,190 / /
1
Q amountof heatenergyneeded
Q Q Q
Q amountof energyneeededtochange
waterat Ctowaterat C
mc T
m massof water kg
c specificheatcapacityof water
J kg C
T temperaturechange

 

 
 
 

 
   00 20 80C C C    

2

100 100 .


2,257,000 /
(5.0 )(4,190 / / )(80 ) (5.0 )(2,257,000 / )
12,961,000
v
v
Q amountof energyneeded tochange
waterat Ctosteamat C
mL
L specificlatentheatof vapourization
of water
J kg
Q kg J kg C C kg J kg
J

 



   

0.50
20 ?

500/ /
270,000/ .
Whatheatisrequiredtomelta kg
blockofironifinitiallyitisat C
Thespecificheatcapacityofironis
Jkg Candthespecificlatentheat
offusionofironis JkgThe
melting


int 1,200 .po ofironis C 

1 2
1


0.5 20
1,200 .
0.5
500 / /
Q Q Q
Q amountof heatrequired
Q amountof energyneededtoraisethe
temperatureof kgof ironfrom C
to C
mc T
m massof iron kg
c specificheatcapacityof iron J kg C
T temperatu
 




 
 
  
 
1
1,200 20 1,180
(0.5 )(500 / / )(1,180 )
=295,000
rechange C C C
Q kg J kg C C
J
     
  

2
2

1,200

270,000 /
(0.5 )(270,000 / )
135,000
295,000 135,000
430,000
f
f
Q amountof energyneededtomelt
ironat C
mL
L specificlatentheatof fusionof iron
Jkg
Q kg Jkg
J
Q J J
J







 

.

70
Onemethodof reducingadangerouslyhigh
bodytemperatureveryquicklyistogivea
patientalcoholrubHowmanygramsof
alcoholmustbeevaporatedfromthesurface
of a kgpersontoreducehistemp
1.05 ?
3,419.6 / / .
854,760 / .
erature
by C Specificheatcapacityof tissueis
J kg C Specificlatentheatof
vapourizationof alcoholis Jkg

1 2
1
1




854,760
854,760
a v
a
v
a
Q Q
Q amountof energyneededtoevaporate
thealcohol
mL
m massof alcohol
L specificlatentheatof vapourizationof
alcohol
J
Q m






2
2

70

3,419.6 / /
1.05
(70 )(3,419.6 / / )(1.05 )
251,340.6
854,760 251,340
p p
p
p
a
Q amountof heatlostbyperson
mc T
m massof person kg
c specificheatcapacityof person
J kg C
T temperaturechange C
Q kg J kg C C
J
m

 
 

 
   
  

 .6
0.42
a
m kg

Heattransferoccurswhenthereisatemperaturedifference.
Therearethreemodesofheattransfer:conduction,
convectionandradiation.
Conductionisthetransferofheatthroughstationarymatter
byphysicalcontact.
Anexampleofconductionistheheattransferthatoccurs
betweenbarefeetandacoldfloor.
Therateofheattransferbyconductiondependsonthe
thermalconductivityofthematerial,thesurfaceareain
contact,thetemperaturedifferencebetweenthetwosurfaces,
andthethicknessofthematerialthroughwhichtheenergy
flows.

Convectionisthetransferofheatbythemovementofafluid.
Inconvection,gravitypullsthedenserportionofafluid
beneaththelessdenseportions
Energytransferbyconvectionrequiresafluid.
Convectioncanbenaturalorforced.Innaturalconvection,
theforceofgravitypullsthedenserportionofafluidbeneath
thelessdenseregionsofthefluid.
Heattransferbyradiationisthetransferofheatenergyby
electromagneticradiation.

PHYS 101 PHYSICS FOR
HEALTH SCIENCES
CURRENT, VOLTAGE,
RESISTANCE, OHM’S LAW, AND
POWER

Chargeisabasicphysicalpropertycarriedbycertain
subatomicparticles,suchaselectrons,anditisthebasisof
electromagneticforce.
Therearetwotypesofcharges:positiveandnegative.
Positivechargesdenotedeficiencyofelectronsandnegative
chargesdenoteexcessofelectrons.
Electronscarrynegativechargeandprotonscarrypositive
charge.
Electrostaticforcesresultfromtheseparationofpositiveand
negativecharges.

Theprincipleofconservationofchargestatesthatcharges
canbeseparated,buttheycanneitherbecreatednor
destroyed.
Likechargesrepel,andunlikechargesattract.
TheSIunitofchargeistheCoulomb(C).
Thechargesoftheelectronandprotonarethesmallest
amountsofchargethatareobservedinnature.Theyare
exactlyequalinmagnitudeandoppositeinsign.
19
19
1.6 10
1.6 10
arg
arg
e
p
e
p
Q C
Q C
Q ch eonanelectron
Q ch eonaproton


 
 

Coulomb’slawgivesaquantitativeexpressionforthe
electrostaticforcebetweentwostationarycharges.
1 2
2
1
2
9 2 2

arg 1
arg 2
tan arg
' tan
9.0 10 /
QQ
F K
d
F magnitudeof electrostaticforce
Q magnitudeof ch e
Q magnitudeof ch e
d dis ceorseparationbetweenthech es
K Coulombscons t
Nm C






 

9
'
arg 1.0 10
1.0 .
? arg

CalculatetheforceinNewtonsbetweentwo
identicalch esof Cseparatedby
cmWhatistheforceif theseparationis
doubled Whatistheforceif thech es
areincreasedbyafactoro


9 2 2
10
1.0 . '
tan 9.0 10 / .
f andthe
separationiskeptat cmCoulombs
cons tis Nm C

1 2
2
9
1
9
2
2
9 2 2
9 9
9 2 2
2 2
5
1.0 10
1.0 10
1.0 1.0 10
9.0 10 /
(1.0 10 )(1.0 10 )
9.0 10 /
(1.0 10 )
9.0 10
QQ
F K
d
Q C
Q C
d cm m
K Nm C
C C
F Nm C
m
N



 



 
 
  
 
 
  

 

Everychargecreatesanelectricfieldarounditself.Similarly,
allmagnetscreateamagneticfieldandallmassescreatea
gravitationalfield.
Anelectricfieldisaregionorspacearoundachargewithin
whichanelectricforceisexertedonothercharges.Thus,an
electricfieldisafieldofforce.
Voltageorpotentialdifferenceisenergyperunitcharge.
TheSIunitforvoltageisthevolt(V).
arg
Energy
Voltage
Ch e

1 1 /V JC

Currentisdefinedastheamountofchargethatflowsperunit
time.
TheSIunitofelectriccurrentistheampere(A).
Currentiscausedbyanelectricalpotentialdifference
betweentwolocationsinaconductor.
argCh e
Current
Time

1 1 /A Cs

10
19
10
10
19
9

arg
2.0 10 ?
1.6 10 1
2.0 10
2.0 10 1
1.6 10
1.25 10
Howmanyelectronsmustberemoved from
anobjecttoleaveitwithach eof
C
C e
C
C e
C
e






 

  

 

Ohm’slawstatesthattheamountofcurrentthroughagiven
circuitisdirectlyproportionaltothepotentialdifferenceand
inverselyproportionaltotheresistanceofthecircuit.
Resistanceistheoppositiontocurrent.
TheSIunitofresistanceistheOhm(Ω).

tan
V
I
R
I current
V voltageorpotentialdifference
R resis ce



tan 15
3.0 ?
3.0
tan 15
3.0
15
0.20
Whatcurrentflowsthroughaflashlight
if itsresis ceis anditsbatteries
haveatotalpotentialdifferenceof V
V potentialdifference V
R resis ce
V
I
R
V
A

 
  



Essentially,anelectriccircuitconsistsofasourceofvoltage,
aload,andwiresthatconnecttheloadtothesourceof
voltage.
Aloadisanythingordevice,whichdrawscurrentfroma
sourceofvoltage.Conventionally,currentflowsfromthe
positiveterminalofthevoltagesource,throughtheloadand
backtothenegativeterminalofthevoltagesource.

Aresistorisamelectricaldevicethatoffersresistancetothe
flowofcurrent.Resistanceisapropertyofaresistor.
Twoormoreresistorsareconnectedinseriesifthesame
currentpassesthroughthem.
Forresistorsconnectedinseries,thetotalorcombinedor
effectiveresistanceisthesumoftheindividualresistances.
Thevoltagedropacrossanyresistoristheproductofits
resistanceandthecurrentpassingthroughit.
Foraseriescircuit,thesumofthevoltagedropsisequalto
theappliedvoltageorsourcevoltage.

1 2
1 1
1
2 2
2
1 2
tan



T
T
R total or effectiveresis ce
R R R
V applied voltageor sourcevoltage
V voltagedrop across R
IR
V voltagedrop across R
IR
V V V

 





 

Twoormoreresistorsordevicesareconnectedinparallelif
thesamevoltageappearsacrosseachandtheircombined
resistor.
Forresistorsconnectedinparallel,thetotalorequivalent
resistanceisthereciprocalofthesumofthereciprocalsofthe
individualresistances.
Thevoltagedropacrosseachresistoristheproductofits
resistanceandthecurrentpassingthroughit.
Foraparallelcircuit,thetotalcurrentorsourcecurrentisthe
sumoftheindividualcurrents.

1 2
1 2
tan
1 1 1
1
1 1
T
T
T
R totalresis ce
R R R
R
R R

 


1 1
2 2
1 2


sin
sin
V appliedorsourcevoltage
I totalorsourcecurrent
I currentpas gthroughR
I currentpas gthroughR
I I I




 

Thepowerrequired,consumedordissipatedbyanelectrical
deviceorcomponentisgivenby:
2
2

P IV
P I R
V
P
R
P electricalpower
I current
V voltage





2
2
2
tan 100
120 .
100
120
(120 )
100
144
Calculatetheresis ceof a W
lightbulbthatuses Velectricity
P power W
V voltage V
V
P
R
V
R
P
V
W
 
 



 

Thecostofusinganelectricaldevicedependsontwothings:
thepowerratingofthedevice(i.e.howmuchpowerthe
deviceconsumes)andhowlongthedeviceisused.
Sinceenergyconsumedistheproductofpowerandtime,a
largeelectricaldevice(i.e.onewithalargepowerrating)uses
moreenergyinagivenamountoftimethanasmallone.
Ontheotherhand,smallelectricaldevices,suchaslight
bulbs,thatareusedformanyhoursconsumelargeamountof
electricalenergy.
Inelectricbills,energyconsumedismeasuredinkilowatt-
hour(kWh).
( ) ( ) ( )energykWh PowerkW Timeh 

cos
0.011 / . cos
100 16 .
100 0.1
16
0.1 16
1.6
1 0.011
1.6
Theaverage tof electricenergyisabout
CediskWh Calculatethe tof
operating W lightbulbfor hours
Power W kWh
Time h
Energy Power Time
kW h
kWh
kWh Cedis
kW
 

 
 


1.6
0.011
1
0.0176
kWh
h Cedis
kWh
Cedis
 

Circuitbreakersandfusesaredesignedtominimizedamage
ifexcessivecurrentflowsinacircuit.
Electricityhastwobasichazards:thermalhazardsfrom
overheatingofwires,andelectricalshockhazardsfrom
currentpassingthroughaperson.
Circuitbreakersandfusesareusedinelectricalcircuitsto
preventlargecurrentsfromcausinglarge.
Acircuitbreakerorafusewillinterrupttheflowofcurrentif
thecurrentexceedsitratingorcapacity.
Electricalshockisdefinedasunwantedphysiological
responsetoelectricityandcurrent,andtherearetwotypes:
microshockandmacroshock.
Tags