Plant Phenomics

agrinava 4,679 views 77 slides Oct 16, 2017
Slide 1
Slide 1 of 77
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77

About This Presentation

Recent Progresses in Plant Phenomics


Slide Content

RECENT PROGRESSES IN PLANT PHENOMICS Navaneetha Krishnan J L-2016-A-18-D School of Agricultural Biotechnology Punjab Agricultural University Ludhiana

SEMINAR OUTLINE

Wild Ancestors of Some Crops https://i0.wp.com/www.exposingtruth.com/wpcontent/uploads/2015/03/originalfoods.png?resize=452%2C497 https ://pbs.twimg.com/media/C-Qe026WsAEfGQY.jpg INTRODUCTION

Genotype and Phenotype Wilhelm Johannsen (1857–927) Johannsen (1903)

Plant Phenomics , Phenome and Phene

The P henotpying B ottleneck https://genome.duke.edu/sites/genome.duke.edu/files/ngs_slide6.jpg Genomic Selection Genotyping by Sequencing GWAS Next Generation S equencing High- thoughput Genotyping SNP chips High-throughput Phenotyping https:// www.olympusims.com/data/Imge/appnotes/data_collections_xrf_field_china.JPG?rev=9ECF http:// hibusiness.ca/wpcontent/uploads/2017/06/snail-graph-slow.jpg Spatial and temporal flexibility Time consuming Labour intensive Conventional Phenotyping

Levels of Plant P henotyping and Factors Influencing the Phenotype Dhondt S et al (2013) Trends Plant Sci 18 :428-39

Forward and Reverse Phenomics Kumar J et al (2015) Phenomics in Crop Plants: Trends, Options and Limitations Springer, India pp. (1-10)

Controlled Environment vs Field Phenotyping Controlled Environment Field Better control of soil moisture and nutrient inputs Difficult to control input application Offseason phenotyping and imposition of biotic stress possible Not possible Accurate data acquisition under desired lighting using variety of cameras Lighting cannot be controlled, shadow effects and influence of wind Cannot immitate natural field conditons -space constraints Natural growth environment of the crop Two approaches : Moving plants along the sensors and Moving sensors along the plants Single approach : Moving sensors along the plants

Phenotyping Technologies and Platforms

Variety of Imaging Cameras Fahlgren N et al (2015) Curr Opin Plant Biol 24 : 93-99

Imaging technologies

Golzarian M R et al (2011) Plant Methods 7 :2 Image processing steps used in the extraction of plant's projected shoot area from 2D visual images (1) Visible l ight imaging

C omparison of LAI measured by the LAI-2000 and derived from digital colour photographs Liu J and Pattey E (2010) Agric For Meteorol 150 :1485-90

(2) Thermal Imaging Thermal imaging allows for the visualization of infrared radiation, indicating an object as the temperature across the object’s surface Furbank R T and Tester M (2011) Trends Plant Sci   16 : 635-44

(3) Spectral imaging http://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/ Two types:

Barbagallo R P et al (2003) Plant Physiol   132 : 485-93 (4) Flourescence imaging

Images of standard mock control and Dickeya dadantii -infected zucchini leaves at 3, 7 and 10 days post inoculation (dpi )

(5) 3-Dimensional imaging Paulus S et al ( 2014) Biosyst Eng 121 :1-11

Overview of 3D scanning and reconstruction process Nguyen C et al (2016) In   Digital Image Computing: Techniques and Applications (DICTA), 2016 International Conference on   IEEE pp . 1-8

6) Magnetic Resonance Imaging (MRI) M aize plant at 10 DAS Dusschoten D V et al (2016) Plant Physiol doi : 10.1104/pp.15.01388

7) X-ray computed tomography http:// www.shimadzu.com/an/sites/default/files/ckeditor/an/ndi/ct/qn5042000002jzy4img/qn5042000002k8hg.jpg 3-D visualization of maize roots Mooney S J et al 2012 Plant Soil 352 :1–22

 X-ray Computed Tomography system at the Danforth Plant Science Center, Missouri https://www.danforthcenter.org/news-media/roots-shoots-blog/blog-item/unique-imaging-platform-to-advance-research-on-the-development-of-roots

PHENOTYPING PLATFORMS

Controlled Environment Phenotyping Platforms LemnaTec , Germany http://www.lemnatec.com/products/

Phenospex , Netherlands PlantEye F500 https://phenospex.com/products/plant-phenotyping/science-planteye-3d-laser-scanner/ planteye-f500-multispectral-3d-laser-scanner /

DroughtSpotter https://phenospex.com/products/plant-phenotyping/drought-control-platform/

Field Scanalyzer ( LemnaTec ) http://www.lemnatec.com/products/ Ground-based Plant Phenotyping Platforms

Plant Phenotyping system built on a open rider sprayer sonar proximity sensor/ infrared radiometer sensor multi-spectral crop canopy sensor Andrade-Sanchez P et al (2014) Funct Plant Biol 41 : 68-79 GPS-RTK receiver-antenna

Rebetzke G J et al (2013) Funct Plant Biol 40 :1-13 Purpose built crop monitoring buggy

Aerial Phenotyping Watanabe K et al (2017) Front Plant Sci 8 doi : 10.3389/fpls.2017.00421 Unmanned Aerial Vehicle (UAV) based phenotyping

Phenocopter Chapman S C et al (2014) Agronomy 4 (2 ):279-301

Phenotyping the hidden half Root Phenotyping http:// www.barleyhub.org/wordpress/wpcontent/uploads/2016/10/3.jpg

S. No Plant Cultivation System Growth Media 1. Magnetic resonance imaging Soil (lab, greenhouse and field) 2. X-Ray computed tomography Soil ( lab, greenhouse and field) 3 . Rhizoponics Liquid media (lab) 4 . Clear pot method Soil (greenhouse) 5. Shovelomics Soil (field-based) 6. Soil coring Soil (field-based) 7. Rhizolysimeters Soil (field-based) 8. Minirhizotrons Soil (field-based) Paez -Garcia A et al ( 2015) Plants   4 : 334-55 Approaches for Root Phenotyping

Mathew L et al ( 2015) Plant methods 11 : 3 Rhizoponics https://grdc.com.au/~/media/images/ground-cover/ground-cover-127-supplement/p12-13_figure-2_clear-pots1.jpg Clear pot method Soil filled rhizotrons https://www.pfluglos.de/nachrichten/wurzelforschung-eine-neue-aufgabe-fuer-die-pflanzenzuechtung

Rhizolysimeters Eberbach P et al (2006) Campbell Scientific Inc , USA Minirhizotrons Johnson M G et al (2001) Environ Exper Bot 45 :263-289

Pask A J D et al (2012) Physiological breeding II: a field guide to wheat phenotyping . Cimmyt pp. (87-94) Soil coring http://research.ncl.ac.uk/nefg/nuecrops/n7.php Shovelomics

Jeudy C   et al (2016) Plant methods   12 :31 Rhizotubes

Root image analysis Software packages for imaging roots and extracting quantitative data from captured root images RootScan RootNav , DART GiARoots IJ Rhizo , RootSystemAnalyzer RootReader RootReader3D RooTrak The method for culturing the plants often dictates the usefulness of a particular image analysis tool Paez -Garcia A et al ( 2015) Plants   4: 334-55

Data Integration in Plant Phenomics M ulti-trait phenotyping pipeline Granier C and Vile D (2014) Curr Opin Plant Biol 18 : 96-102

Rahaman M M et al (2015) Front Plant Sci 6 :619 doi : 10.3389/fpls.2015.00619 High-throughput plant phenotyping and data accumulation

Online tools for Plant Phenomics

Plant Image Analysis http://www.plant-image-analysis.org/

PHENOPSIS DB http://bioweb.supagro.inra.fr/phenopsis/Accueil.php?lang=En

Phenomic Data Management Phenomic data management involves three critical components Algorithm and Program Phenotypic Information Sensory data Model Development Genotype and Phenotype Interactions Understand Management Databases Resource Development and Sharing Networking Granier C and Vile D (2014) Curr Opin Plant Biol 18 : 96-102

Inter(national) Plant Phenotyping facilities and networks LeasyScan Platform at ICRISAT, Hyderabad – Dr. Vincent Vadez http://www.icrisat.org/research-facilities/ INDIA

Indian Plant Phenomics Facilities IIHR, Bengaluru http:// www.nicraicar.in/nicrarevised/images/Home/Inauguration2.jpg CRIDA, Hyderabad http://www.iihr.ernet.in/system/files/Inauguration%20of%20Plant%20Phenomics%20National%20Facility%20at%20ICAR_IIHR%20c.jpg NIASM, Baramati http://www.icar.org.in/files/niam-01-25102016.jpg https://www.siasat.com/news/pm-modi-inaugurating-plant-phenomics-centre-iari-1241436/ IARI, New Delhi

Australian Plant Phenomics Facility http :// player.slideplayer.com/18/6119592/data/images/img12.jpg http:// player.slideplayer.com/18/6119592/data/images/img11.jpg AUSTRALIA

PlantScan Phenotower TrayScan Cropatron Plant Phenomics Teachers Resource APPF 2010

http://seccombe2010.anat.org.au/files/2010/10/IMG_4638.jpg Blimp

LEPSE ( Ecophysiology Laboratory of Plants Under Environmental Stress ), Montpellier https://www6.montpellier.inra.fr/lepse_eng/ FRANCE

Heliaphen , an outdoors high-throughput automated phenotyping https://www6.toulouse.inra.fr/lipm_eng/Platforms-and-Facilities/Plant-production-and-experimentation-platform/Equipment-Facilities

Jülich Plant Phenotyping Center, Forschungszentrum Jülich , Germany GROWSCREEN Rhizo GROWSCREEN Page http:// www.fzjuelich.de/ibg/ibg2/EN/Research/ResearchGroups/JPPC/JPPC_node.html GERMANY

Field-Prophet http:// www.fzjuelich.de/ibg/ibg2/EN/Research/ResearchGroups/JPPC/technologies/FieldProphet/FieldProphet_node.html

The Nordic Plant Phenotyping Network (NPPN) The European Plant Phenotyping Network (EPPN) The German Plant Phenotyping Network (DPPN) The UK Plant Phenomics Network (UK-PPN) The International Plant Phenotyping Network (IPPN) Plant Phenotyping Networks

International Plant Phenotyping Network https://www.plant-phenotyping.org/

Case Study-1 Posted July 9, 2017

Dr. Lee H ickey , University of Queensland Wheat, Barley & Chickpea (~6gen/ yr ) Mustard (4 gen/ yr ) http://www.bojanglesmuseum.com/4204/nasa-logo-image-14-08-2017/ http ://hickeylab.com/our-projects/speed-breeding/

Requirements for speed breeding Watson A et al (2017) bioRxiv p . 161182 doi :  https://doi.org/10.1101/161182

Conventional vs Speed Breeding Watson A et al (2017) bioRxiv p . 161182 doi :  https://doi.org/10.1101/161182 video

Ear and seed morphology of Triticum aestivum cv. Chinese Spring Speed Breeding Control Watson A et al (2017) bioRxiv p . 161182 doi :  https://doi.org/10.1101/161182

Wheat crossing under Speed breeding conditions Efficiency rates for wheat crosses under speed breeding condition Watson A et al (2017) bioRxiv p . 161182 doi :  https://doi.org/10.1101/161182

Phenotyping plants under speed breeding conditions Phenotyping under Speed breeding conditions Watson A et al (2017) bioRxiv p . 161182 doi :  https://doi.org/10.1101/161182

Applications of speed breeding Speed breeding can greatly accelerate the crop improvement process Can be integrated with other advanced techniques like genomic selection, genome editing, high-throughput genotyping, etc Speed breeding protocols are also being tested by various researchers in other crops like Groundnut and Grain Amaranth to name a few

Experimental outline F 7 bulked RILs derived from IR64 (mega variety) X Aswina (high biomass landrace) cross RILs were planted in three cohorts with stagerred planting dates Plot size adjusted for tractor movement (housing HTP platform) 1516 RILs were genotyped by GBS P henotyped manually and by tractor mounted high-throughput platform

Tractor-based HTP platform Tanger P et al (2017) Sci Rep 7 :42839 doi:10.1038/srep42839

Manual and HTP data collection Summary of HTP data collection HTP Traits : Plant height, NDVI, NDRE, Chl a and Canopy temperature depression Manual data collection at 80 DAS and above – Days to heading, Plant height, Biomass, Grain yield (cohort 3)and Harvest index ( cohort3) Tanger P et al (2017) Sci Rep 7 :42839 doi:10.1038/srep42839

The NDVI effect size of QTL [email protected] (Chromosome#@ cM ) Tanger P et al (2017) Sci Rep 7 :42839 doi:10.1038/srep42839

Manually-measured traits are genetically correlated with HTP traits across QTL Tanger P et al (2017) Sci Rep 7 :42839 doi:10.1038/srep42839

Significant findings of Tanger et al (2017) D etecting QTL with HTP phenotyping is accurate and effective Genomic regions controlling yield and yield components can be identified nondestructively and in a fraction of the time F ield based HTP allows efficient screening of large populations HTP can offer rapid, early prediction of phenotypes leading to better selection of lines

Conclusions http:// www.visionsystems.com/content/dam/VSD/onlinearticles/2013/02/vsdnews02182013robot.jpg http:// www.enterrasolutions.com/media/Precision-agriculture-clear-02.png http://www.lorenzlab.net/uploads/1/4/5/7/14579560/8443866_orig.jpg http:// www.travelerfood.com/blog/wp-content/uploads/2015/05/IndianRailways-is-the-9th-largest-employer-of people-in-the-world.jpg http://media.istockphoto.com/vectors/science-concept-collaboration-of-professionals-vector-id465361582 https:// callminer.com/wpcontent/uploads/2015/07/contact-center-efficiency.jpg

Thank You…
Tags