Plastic Packaginghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh.pdf

QuangMinh135 11 views 146 slides May 18, 2025
Slide 1
Slide 1 of 146
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146

About This Presentation

ggg


Slide Content

Plastic Packaging
By Nguyen ThiQuynh Ngoc

https://www.grandviewresearch.com/industry-analysis/food-packaging-market

Plastic Packaging Materials
https://www.grandviewresearch.com/industry-analysis/plastic-packaging-market

Plastic Packaging Materials

Plastic Packaging Materials
•Plasticpackagingmaterialsarepredominatelyconstitutedofpolymers
(70–99%)containingalwaysvariousamountsofadditives,suchas
plasticisers,antioxidants,pigments,antistatic,fillersandmanyother
compounds
•Theplasticpolymermoleculecontains5000-10.000monomers
•Theplasticpolymercan be homopolymer, copolymer or terpolymer
•At room temperature, plasticpolymer can be crystalline or amorphous
•Allstartingsubstances,aswellasfinishedplasticsmaterialsmusthave
regulatoryapprovals,basedontheirspecificchemicaland
toxicologicalfeatures.

Plastic packaging materials: food and beverage
applications and related solutions

Classification of polymers on the basis of structure
•Group 1. Linear polymers

Classification of polymers on the basis of structure
•Group 2. Branched polymer and cross-linked polymers

Classification of polymers on the basis of structure
•Group 3. Cross-linked polymers

Classification of polymers on the basis of origin
•Fuel-Derived Polymers
•Bio Polymer

Factors affecting the characteristics of polymers
•Themonomerfromwhichthepolymerisformed
•Tacticity
•Thewayinwhichthemonomerispolymerised
•Thedegreeofcrystallinityofapolymer
•Themolecularweightandmolecularweightdistributionwithinthepolymer
•Howmanymonomershavebeenusedtomakethepolymer
•Theorientationofeachmonomerinacopolymer
•Thetypeofinter-andintra-molecularforceswithinthepolymerstructure
•Theadditiveswithinapolymermix,readyforprocessingintopackaging
•Theuseofspecialtreatments
•Mixingpolymersinanorderlymanner
•Thephysicalorientationofapolymericpackagingplastic.

Factors affecting the characteristics of polymers
•Themonomerfromwhichthepolymerisformed
-Thechemicalmake-upofthepolymerinfluencessuch
propertiesasdensity,thermalproperties,meltingandsoftening
point,solubility,andpermeabilitytogasesandmoisture
vapour.
-polypropylenehasthebestbarriertomoisture,followedby
polyethylene,polyvinylchlorideandlastlypolyvinylidene
chloride
-Thelargertheatomorfunctionalgroup,themoredifficultitis
forittorotateaboutthecentralcarbonbackbone→thelarger
T
glasstransition
-Non-polarpolymerssuchaspolypropyleneandpolyethylene
haveverylowsurfaceenergy;asaresulttheyaredifficultto
bondandthereforedifficulttoprint→needspecialsurface
treatmenttoincreasesurfaceenergy
-Factoraffectedbythenon-polarnatureofapolymeris
gas/waterbarrier

Factors affecting the characteristics of polymers
•Tacticity
✓Tacticityisdefinedas‘theorderlinessofthesuccessionof
configurationalrepeatingunitsinthemainchainofaregular
macromolecule’or“therelativestereochemistryofadjacentchiral
centerswithinamacromolecule”
✓Tacticitycansignificantlyaffectmanyphysicalpropertiesofpolymers
andconsequentlypossibleusefulapplications
✓atacticpolypropylenehasaT
gof–19°C,whereasisotactic
polypropylenehasaT
gof–8°C
Isotactic polymers Syndiotactic polymers
Atactic polymers

Polymerisation methods, initiators and catalysts
•Hightemperatureandpressurewithanorganicperoxideprovidingthe
freeradicalinitiator
•Lowtemperatureandpressureandusesanorganometalliccatalyst
LDPE
LLDPE

Factors affecting the characteristics of polymers
Crystallinity:Bedefinedasthefractionofapolymerthatconsistsof
regionsshowingthree-dimensionalorder
Asincreaseincrystallinityresultsdensityinincreasesinstiffness,softening
andmeltingpoints,tensilestrength,barriertomoistureandgasesand
resistancetooilandgreaseanddecreaseintransparency

Factors affecting the characteristics of polymers
•Molecular Weight:
✓weights(MW)typicallybetween50and200kDa.Apolymerhasvery
rarelyasingleMWbecausemoleculesofdifferentsizesareformed
duringthepolymerizationprocess.
✓Asthemolecularweightincreases,themeltingtemperature,the
viscosityofthemeltincreases,makingitmoredifficulttoprocess,but
mechanicalpropertiessuchastensilestrengthandstiffnessimprove,
whichisabenefit.
✓Thewiderthemolecularweightdistributionforagivenaverage
molecularweightofapolymer,thelessistheresistancetoflow
(viscosity)andthemeltingpoint

Factors affecting the characteristics of polymers
•Intermolecular Forces: Intermolecularforcesareresponsiblefor
holdingtogetheradjacentmolecules.Theyrangefromweakdispersion
forcestostrongdipole-dipoleinteractions,dependingonthechemical
structureofmolecules

Factors affecting the characteristics of polymers
•Intermolecular Forces
little or no branching chains are connected by a crosslink

Factors affecting the characteristics of polymers
•Additives
✓Antioxidant
✓UVstabilizersandinhibitors
✓Slipagents
✓Antistaticagents
✓Colors
✓Fillers

Oil Derived Polymers (Synthetic Polymers)
•Molecular Orientation

Synthetic Polymers for Food Packaging

Synthetic Polymers for Food Packaging
•Resin identification code

Polyethylene (PE)
•Themostcommonlyproducedplastic

Polyethylene (PE)
•The most common polyethylene types used in food packaging are high
density polyethylene (HDPE), low density polyethylene (LDPE), and
linear low density polyethylene (LLDPE).

LDPE LLDPE HDPE
Polymer Full NameLow Density Polyethylene Linear Low Density Polyethylene High Density Polyethylene
Structure
High degree of short chain branching +
long chain branching
High degree of short chain branching
Linear (or Low degree of short
chain branching)
Density 0.910-0.925 g/cm
3
0.915-0.935 g/cm
3
0.941-0.965 g/cm
3
Softening point 85-93
o
C 95-120
o
C > 120
o
C
Melting point 100-110 °C 110-125 °C 125-135 °C
T
min -57
o
C -57
o
C -46
o
C
Crystallinity
Low crystalline and high amorphous (less
than 50-60% crystalline)
Semi-crytalline, level between 35 to
60%
High crystalline and low amorphous
(>90% crystalline)
Characteristics
•Flexible and good transparency
•Good moisture barrier properties
•High impact strength at low temperature
•Excellent resistance to acids, bases
•Low resistance to fat and organic solvent
•High gas (O
2, CO
2, N
2)permeability
•Low printability
•As compared to LDPE, it has higher tensile
strength and higher impact and puncture
resistance
•Low resistant to oil and organic solvent
•Lower gas (O
2, CO
2, N
2) permeability than
LDPE
•Excellent resistance to acids, bases
•Better printability
•Excellent chemical resistance
•High tensile strength
•Excellent moisture barrier properties
(better than LDPE)
•Hard to semi-flexible
•Better resistance to fat and organic acid
than LDPE and LLDPE
•Excellent resistance to acids, bases
General Applications
Shrink wrap, films, squeezable bottles garbage
bags, extrusion moldings, and laminates
Inner most layer of multilayer packaging
Caps/trays
High performance bags, cushioning films, tire
separator films, industrial liners, elastic films,
ice bags, bags for supplemental packaging
and garbage bags
Outermost layer to provide moisture barrier
•Bottles, boxes, jars
•Caps
•Bags for antioxidant food products

LDPE

HDPE

Polypropylene (PP)

Polypropylene (PP)
•Structure

Polypropylene (PP)
•Density: 0.885-0.905 g/cm
3
•Softening point: 132-149
o
C
•Melting point: ~ 130to171°C
•T
min = -18
o
C
•T
sealing = 176°C
•PPisstrongandhasexcellentchemicalresistancewithhighmelting
pointmakingitgoodforhot-fillliquids/foodundergosterilization
•PPisfoundinbothflexibleandrigidpackaging

Polypropylene (PP)
•Excellentopticalclaritybothinbiaxiallyorientedfilms(BOPP)andstretch
blow-moldedcontainers.
•Highthermalresistanceduetothemethylgroupinthemainchain.
•Highresistancetochemicalsbuthaspooroxidativestabilities.Additionof
antioxidantsisthereforenecessaryforstabilityinapplicationsinvolving
oxidativeenvironments.
•Anon-toxic,easilyprocessablepolymer
•Gooddielectricandinsulationproperties
•Goodmechanicalproperties.
•High printability
•Hightensilestrength,mechanicalstrength(betterthanPE),shearstrength
•Hightolerancetoacid,base

Polypropylene (PP): Applications
•Plasticbagswith25-30mmforfreshproduce,sugar,salt
•Containersforyogurt,margarine,takeoutmealsanddelifoods,acid-containing
foods
•PPisusedinpackagingapplicationsasanalternativetopolyethylene.Dueto
higherstabilityofPE,itisgenerallypreferredoverPPinapplicationswherethe
finalproducthasapplicationsinoxidativeenvironment
•Container for microwavable foods

Polyethylene Terephthalate (PET)
•PETisalinearthermoplasticaromaticpolymer

Polyethylene Terephthalate (PET)
•Density: 1.4 g/cm
3
•Temperature resistant: -70
o
C-150
o
C
•Melting point: > 250°C
•Undergo contraction at 60
o
C
•Capabilityforhotfilling
•Opticalclarityandsmoothsurfacesfororientedfilmsandbottles
•Highimpactcapabilityandshatterresistance
•ThePETcanexistineitheramorphousorcrystallineform.This
broadenstherangeofapplicabilitytoawidevarietyofpackaging
applications.
https://www.toyo-
seikan.co.jp/e/product/beverage/petbottle/heatproofpressurebottle/

Polyethylene Terephthalate (PET)
•AmorphousPETishighlytransparentbutisvulnerabletothermal
degradation.
•CrystallinePETishighinstrength,rigid,dimensionallystable,water
resistanceandthermallystable.
•CrystallinePETpossessesgoodresistancetochemicalsbutnotatgoodas
PEorPP.
•Highmechanicalstrength
•Rigid
•Superiorgasbarrierproperties:oxygen,waterandcarbondioxide,
makingitanidealchoiceinseveralfoodpackagingapplications.
•Excellentsolventresistance
•Hightolerancetoacid,base
•Goodprintability

Polyethylene Terephthalate (PET): Application
•Boxes/Bottles/Jarsforcarbonateddrinks
•Plasticfilms/bottlesforfoodproductspasteurizedatlowtemperature
•Plasticfilmforantioxidantproducts
•MAPpackagingforfreshmeat

Polystyrene
•Density:1.05-1.06g/cm
3
•Temperaturetolerancerange:-62-88
o
C
•Polystyrenecanbesolidorfoamed
•Rigid
•clear,hard,andbrittle
•Highmechanicalstrength
•poorbarriertooxygenandwatervapour
•Goodresistancetooil,acid,base
•Goodprintability

Polystyrene

Nylon (PA6, PA66, PA11)
Nylon 11

Nylon (PA6, PA66, PA11)
•Condensationpolymerization
•Tendtoabsorbmoistureduetotheamidechemicalgroup
•Verytoughmaterials

Nylon 6, 66
•Meltingpointsare223°Cand255°Crespectively
•T
min=-70
o
C
•Superiorresistancetofuelandoil
•Lowgaspermeability
•Highwaterabsorptionandwaterequilibriumcontentlimitstheusage
•Attackedbystrongmineralacidsandabsorbspolarsolvents
•Highimpactstrengthevenatlowtemperature
•Verygoodflowpropertyforeasyprocessing
•Possessesgoodabrasionandwearresistance
•PA6hasexcellentsurfaceappearanceandbetterprocessabilitythanPA66(duetoitsverylowviscosity)
•Goodelectricalinsulatingproperties
•Properdryingbeforeprocessingisneeded
•Lowrigid(cannotproducebottles/boxes/jars)

Nylon 6, 66
https://omnexus.specialchem.com/selection-guide/polyamide-pa-nylon

Nylon 11
•Haslowestwaterabsorptionpropertyamongalltheavailablepolyamides
•Outstandingimpactstrength,evenattemperatureswellbelowthefreezingpoint.
•Resistanttochemicals(likegreases,fuels,commonsolventsandsaltsolutions)
•Outstandingresistancetostresscracking,agingandabrasions.
•Hasverylowcoefficientoffriction
•Showshighfatigueresistanceunderhighfrequencycyclicalloadingcondition
•Highlyresistanttoionizationradiation
•Possessesnoiseandvibrationdampingproperties
•Abilitytoaccepthighloadingoffillers
•Highcostrelativetootherpolyamides
•PoorresistancetoboilingwaterandUV
•Degradedbystrongmineralacidsandaceticacidandaredissolvedbyphenols.

Nylon-application
•Applicationinvacuumpackaging
•Packagingforfrozenfoods
•Applicationinmultilayerpackages

Ethylene Vinyl Alcohol (EVOH)
•Density:1.14-1.19g/cm
3
•Temperaturetolerancerange:-17–150
o
C
•Thebestbarrierresistancetogasessuchasoxygen,nitrogen,andcarbondioxide(comparabletoPVDC)at
lowRHbutincreasesignificantlywiththeincreasingofRH.
•Donotabsorbodorcompounds
•highresistancetohydrocarbons,oilsandorganicsolvents
•flexible,crystalclear,glossythermoplasticcopolymer
•excellentflex-crackresistance
•Printable
•Costly
•Astrongantistaticpolymer,preventingdustadheringtothepackagewhenusedasasurfacecoating

Ethylene Vinyl Alcohol (EVOH)
•Barriermaterialforfoodpackagingaccountingfor70–75%ofbarrier
filmsusedforretortablepouch.
•Packagesformicrowavablefoods
•Packagesforhighoil/fat-containingfoods
•Usedinmultilayerpackaging(themiddlelayerbetweenPEorPP)

POLYVINYLCHLORIDE -PVC
•Density:1,25–1,50g/cm³
•ResidualvinylchloridegasfromthePVCproductionprocessistoxictohuman→donotuse
forpackagesdirectlycontactwithfoods
•Presentintwoforms:unplasticizedpolymerandplasticizedpolymer(supplementedwith
plasticizers)
•Goodprintability
•Excellentelectricalinsulationproperties
•Verydurableandlonglastingmaterial

POLYVINYLCHLORIDE -PVC
•UnplasticizedPVC:goodbarriertogaspermeability,watervapor,
bettertolerancetolipidthanPE,goodtolerancetoacid/base,
degradablewhencontactwithsolvent.
•PlasticizedPVC(supplementedwithplasticizers):propertiesvary
withusedplasticizers,canhaveodorespeciallywhencontactwith
organicsolvent.

PVC: applications
•Secondarypackaging(uunplasticizedPVC)
•Otherindustries

Polyvinylidene chloride (PVDC)
•T
softening=135
o
C
•T
min=-18
o
C
•T
sealing=150
o
C
•Undergocontractionat120
o
C
•Excellentoxygenandwaterbarrier.Mostalternativebarrierpolymersoffer
justoneortheother.
•PVDC’spermeabilitypropertiesareunaffectedbyrelativehumidity
•Transparancy,mechanicalstrength,flexible,goodadhesion
•Notrecyclable(canproducehalogenatedorganicsandhydrogenchloride
→corrosion,toxic

Polyvinylidene chloride (PVDC)
Application
-Most popular material for fresh meat packing
-The barrier layer in multi-layer structures to enhance the
oxygen barrier
-Plastic bottles/jars

Plastic Extruder

Production of Plastic Containers
•Injection Molding

Production of Plastic Containers
•Blow Molding

The injection molding, extrusion and blow moulding
processes

Multilayer packaging
•Combinationofseverallayersofdifferentmaterialtoaquirethedesire
properties

Multilayer packaging
Chấtliệulàmmàng Chứcnăng
Màngparrafin Chốngẩmvàchốngxuyênthấm
khí
Màngchấtdẻo(chủyếu
làPE)
Chốngẩm,tạođộmềmchobao
bì,tạokhảnănghànkínbaobì,
tạomặtbóngtrangtrí
Màngkimloại(chủyếu
làmàngnhôm)
Chốngẩmvàchốngxuyênthấm
khí
Màngcellulose Tạonềnđểinnhãnhàngvà
trangtrí,tạokhungđểđịnhdạng
chobaobi,tăngđộbền
Màngkeo Gắnkếtcáclớpmàngtạothành
tấmmỏngnhiềulớp

Tetrapak

Multilayer packaging
•Avantages
•Cancombineavantagesofdifferencematerials
•Reducepackageweigh
•Goodbarriertogas,watervapor,water
•Automatedproduction
•Disadvantages
•Lowthermalresistance
•Applicationinasepticfillingmachine(cannotbeusedfor
pasteurilization/sterilization)

Properties of major packaging materials

Properties of major packaging materials

Properties of major packaging materials

Advantages of Plastic Packaging
•Highchemicalresistance
•Simpleandspeedyprocessing
•Canbesealedbyusingheat
•Light
•Diversedesign,form,printing
•CanbeeithertransparentorcolouredtoenhanceUVresistance
•Recyclable

Disadvantages of Plastic Packaging
•Someadditivescanbetoxictohuman
•Unrecycledplasticcauseseriouspollution

Bio-based Polymers (Bioplastics)
•Worldwide,400milliontonsofplasticproductsareproducedannuallyand
lessthan9%ofthemarerecycled→hugeenvironmentalproblem.
•Fossilfuel-derivedplasticspersistinthesurroundingsandtakeadecadeto
degrade.Theseplasticsdegradeintomicroplastics,whichcanquicklyenter
theanimal'sfoodwebandleadtobioaccumulation
•Replacetraditionalnon-biodegradablepolymers,whicharethecauseof
environmentalpollution,withbiodegradablepolymermaterialswith
physicalandmechanicalproperties.
•Amaterialisdefinedasabioplasticifitiseitherbio-based,biodegradable,
orshowsboththesetwoproperties.
•Biodegradable:degradationmechanismischaracterizedbythebreakdown
oforganicchemicalbymicroorganismstocarbondioxide,water,and
mineralsaltsofanyotherelementpresent(mineralization)andnewbiomass
(TheEuropeanNormEN13432)

https://www.iaea.org/newscenter/news/world-oceans-day-
2020-new-iaea-research-records-dramatic-increase-in-
microplastic-pollution-in-eastern-tropical-pacific-ocean

Possible effects of microplastics (MPs) in human
body after exposure.

Adverse health effects of using synthetic
plastics.
M. Sukumar et. al.

The life cycle of bioplastics
CTC Clean Tech Consulting GmbH; WSJ reporting

Biodegradation of polymeric materials
•Inordertoshowcompletebiodegradability,abiodegradationlevelof
atleast90%mustbereachedinlessthan6months

Bio-based Polymers (Bioplastics)
Classification
•Category1:Polymersdirectlyextractedfrombiomasssuchas
carbonhydrates,proteins
•Category2:Polymersproducedbyclassicalchemicalsynthesisfrom
biomass/petroleummonomerssuchaspolylacticacid(PLA)and
biopolyethylene(bioPE)
•Category3:Polymersproduceddirectlybynaturalorgenetically
modifiedorganismssuchasthepolyhydroxyalkanoates(PHA)

Bio-based Polymers (Bioplastics)
Classification

Classification of the main biodegradable polymers

Synthetic Biodegradable Polymers

Thermoplastic starch
•Starchgranulesaresemi-crystallinestructuresmainlycomposedofamylose
(20%-35%)andamylopectin
•Themeltingtemperatureofpurestarchisgreatlyhigherthanthedecomposition
temperatureandthislimitsapplicationsasbioplasticinitsnaturalform→
requiredadditionofplasticizers(glycerol,orsorbitol)
•Plasticizationofstarchproducesthermoplasticstarchor“TPS,”whichsoftens
andcanbeshapedormoldedathightemperatureandsolidifiedatroom
temperature.

Thermoplastic starch
•Varietiesofplasticizednativeandmodifiedstarch,includingcassava,
corn,andpotato,areusedtofabricatefoodpackaging
•Starchishighlyhygroscopicduetolargenumbersofhydroxylgroups
thatreadilyabsorbwaterfromtheenvironment.
•Increasingplasticizers→reducetensilestrength,increaseelongation,
diffusion,andpermeabilitythroughpolymermatrices
•Blendingwithotherpolymersandadditives→avarietyofmaterial
properties,includingmeltflowcharacteristicsandphysical,
mechanical,andbarrierpropertiesoffinalpackaging

Thermoplastic starch
•Advantages
-Costeffective
-Renewable
-Non-toxic
-Environmentalfriendly
•Disadvantages
-Lowwaterresistance
-Lowmechanicalstrength
-Lowstability
-Stickysurface

Polylactic Acid (PLA)

Polylactic Acid (PLA)
•PLAisafamilyofbiodegradablethermoplasticpolyesterwhichisseenas
oneofthemostpromisingpolymersforcommercialuseasasubstitutefor
low-densitypolyethylene(LDPE)andhigh-densitypolyethylene(HDPE),
polystyrene(PS)andpolyethyleneterephthalate(PET)
•PLAischemicallysynthetisedstartingfromsimplesugarsobtainedfrom
biomassandfermentedtolacticacid
•PLAhasreasonablygoodoptical,physical,mechanical,andbarrier
properties
•PLA-oxygenbarriervaluesareintermediatebetweenPETandPSwhile
watervapourpermeabilityissimilartothePA6polyamide

Properties of PLA
•Amorphousglassypolymerto
semi-crystallineandhighly
crystallinepolymer
•Meltingtemperature:130-180°C
•Glasstransitiontemperature(Tg)
ofaround60°C-67°C
•Solubleinorganicsolvent(dioxan,
tetrahydrofuran,benzene)

Polylactic Acid (PLA)
•Advantages
ComparabletoPETplastics
Costeffective
Lowgasandoilpermeability
Moderatewaterpermeability
barrierpropertieswitharomaandflavorretentionoffoodmaterials
As strongas many conventional plastics
Freezer-safe
Temperature tolerance up to 90
o
C
Non-toxic and 100% renewable
•Disadvantages
Gaspermeabilitydependsonhumidity
Notsuitableforpackingfoodtobesterilized
Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Trays

Polylactic Acid (PLA)
•Applications:PLAcanhavebroadestrangeofapplications.
✓cups(coldcups)
✓delicontainers
✓Cutlery
✓saladbowls
✓straws

Cellulose polysaccharide
•ThehighM
wofpolysaccharidescausesnetworkrigidityandgives
highTgandTmvaluesthatlimittheconventionalfabrication
processesforpackaging→Plasticizersarerequiredtoimprove
flexibilityandprocessability
•Esterification(celluloseacetate,celluloseacetatepropionate,and
celluloseacetatebutyrate)yieldscellulosederivativesthataresuitable
forthermoplasticprocessing

Cellulose polysaccharide
•Cellulose-based

Cellulose polysaccharide
•Cellulose-basedpackages

Chitosan and chitin
•Chitinandchitosan:animal-derivednitrogenouspolysaccharides
Exhibitantimicrobialactivities→antimicrobialpackaging

Chitosan and chitin
•Appliedasediblecoating

Chitosan and chitin
•Appliedasediblecoating

Chitosan and chitin
•Appliedasediblecoating

Polyhydroxyalkanoate(PHA)
•PHAsareafamilyofintracellularbiopolymersproducedbybacterial
fermentationofsugarorlipids
•PHAsareformedmainlyfromsaturatedandunsaturated
hydroxyalkanoicacids
•Therearemorethan300differentmicroorganismsthatgeneratePHAs
asnaturalenergyreserves.
•ThemeltingpointofPHBisaround177°C,closetoPP,givingthermal
stability

Polyhydroxyalkanoate(PHA)
•SomeofthegeneralcharacteristicsofPHAs:
✓Waterinsolubleandrelativelyresistanttohydrolyticdegradation
✓Goodultravioletresistancebutpoorresistancetoacidsandbases
✓Solubleinchloroformandotherchlorinatedhydrocarbons
✓Biocompatibleandhencesuitableformedicalapplications
✓Sinksinwater,facilitatingitsanaerobicbiodegradationinsediments
✓Nontoxic
✓Lessstickythantraditionalpolymerswhenmelted.

Polyhydroxyalkanoate(PHA)

PHA
production
from bacteria

Polyhydroxyalkanoate(PHA)

Pizzoliand Bio-on to build Italy's first PHA
bioplastic production plant using potato waste

Polyhydroxybutyrate(PHB)
•Amemberofthebacterialpolyesters,producedbyBacillusmagaterium
•ameltingtemperature(Tm)of180
o
C,
•aglasstransitiontemperature(Tg)of5
o
C
•completelybiodegradable
•Exceptforitsbiodegradability,PHBissimilartoPPintheproperties.PHB
ismorerigidandbrittleandhasverygoodbarrierproperties.
•Canbeusedasasurgicalimplant,insurgery,asseamthreadsforthe
healingofwoundsandbloodvesselsbecauseofitscompatibilitywiththe
bloodandtissuesofmammals

Fermentation to produce PHB from biomass

Polybutylene succinate (PBS)
•Density:1.26g/cm
3
•Meltingpoint:84-115°C
•GlassTransitionTemp:-40--22℃
•ExcellentprocessibilityasgoodasLDPE
•Excellentadhesionandsealstrength
•Excellentprintability
•Suitableforhotfoodserviceware
•SignificantlylowerO
2permeabilitythanPLAandLDPE
•ComparablewaterpermeabilitytoPLA
•Flexibility
http://asuka-platech.com/wp/wp-
content/uploads/2013/12/BIOPBS.pdf

Polybutylene succinate (PBS)

Bio-Derived Polyethylene
•Ethanolproducedbyfermentationfromrenewableresourcescanbeas
arawmaterialforBio-PEproduction.
•Sugar→Ethanol→Ethylene→BioPE
•Bio-PEischemicallyandphysicallyidenticaltotraditionalPE
•Bio-PEisnotdegradablebutcanberecycled
typical Bio-PE production process

Bio-Derived
Polyethylene

Improving the integrity of biopolymer used in
food packaging by crosslinking approach
•Improveintergrity
•Providereducedwatervaporandgasespermeabilityinfood
packagingmaterials

Polyvinyl Alcohol (PVOH)
•Watersoluble
•Density:1.19–1.31g/cm
3
•Meltingpoint:200°C
•Excellentgasbarrier/oxygenbarrier
•Barriertooilsgreaseandsolvents
•Printable
•Odourandperfumebarrierpropertiessuitedforunit-dosecosmetics
•Injectionandblowmouldable:canbeusedinpharmaceuticalcapsulesforhumanoranimal
ingestion,anon-animal-derivedgelatinreplacement

Common crosslinking agents used for some biofilms

Gelatin
•Transparentfilmwithadequatemechanicalproperties,excellentO2
barrierpropertiesatlowrelativehumidityandhighwatervapor
permeability
•Processingmethod:Extrusion,hotandcoldsolutioncastingand
coating
•Application:Compositeandbi-layerfilms,sausagecasingsandpoultry
coatings,filmsandcoatingswithbiomedicalapplications(likewound
dressing)andfunctionalfilmswithantimicrobialagents

Gelatin-based composite films

Gelatin-based composite films
•Gelatine-basedcompositefilmsandcoatingsonfoodpreservation

Gelatin-based composite films
•Gelatin-basedcompositefilmsandcoatingsonfoodpreservation

Gelatin-based composite films
•Gelatin-basedcompositefilmsandcoatingsonfoodpreservation

Milk protein plastic

Plastic From Seaweed

Biodegradable food packaging from agricultural
residue (sugar cane, rice straw, banana stems)

Edible Coatings

Edible coatings
•Atransparentfilmontheproducesurface
•Mode of action:
Regulatingwatervaporandgases(O
2andCO
2)andflavorcompounds
transferinoroutoftheproduce
•Impactsonproducequality
-Betterappearance(imparts gloss, better color)
-Reduces weight loss
-Extends storage life
-Minimize microbial spoilage
•Application:fruit,meat,seafood

Edible coatings
•Equipment
abatchtankandspraying
nozzlestodepositthecoating
dispersiononfoodpiecesasthey
moveoveraconveyorroller

Edible coatings
•Requirementforcoatingmaterials
✓Moderatelylowpermeabilitytooxygenandcarbondioxide
✓Lowwatervaporpermeabilityinordertoretarddesiccation
✓Sensory inertness or compatibility

Edible coatings
•Chemicalcompositionofediblecoating
1.Polysaccharide-Based Coatings (Starches, Cellulose and Its Derivative,
Anionic Polysaccharides, Chitosan)
-BarriertoCO
2andO
2:
-Barrier to water vapor:
-Moisture sensitive:

Edible coatings
•Chemicalcompositionofediblecoating
1.Polysaccharide-Based Coatings: Starches
✓Brittle
✓Require the presence of
plasticizers to improve
their flexibility
✓Example of coating
solution: 10 g NaOH/ L +
20 g starch/ L + H
2O →
neutralized by H
3PO4 +
glycerol (plasticiser)
J Sci Food Agric 1998, 76, 411-420
Effect of starch coating on
strawberries
Infection rate
Weigh loss
Firmness
control
Starches
coating
corn
potato
high amylose corn
amylose-rich product

Edible coatings
•Chemicalcompositionofediblecoating
1.Polysaccharide-Based Coatings: Cellulose and its Derivatives
✓Water solubility can be
conferred by etherification:
methyl cellulose (MC),
hydroxypropyl cellulose (HPC),
hydroxypropylmethyl cellulose
(HPMC), and CMC
✓good film-forming properties
✓Example of coating solution
from MC: MC (3 g/100 ml)
dissolve in H
2O: EtOH (31:11)
→ add glycerol (1.9 g/100 g)
Moisture Respiration
Firmness Flesh color
noncoated
coated
Green
Red
climacteric increases
Effect of MC coating on Avocado (stored at 20
o
C)

Edible coatings
•Chemicalcompositionofediblecoating
1.Polysaccharide-Based Coatings: Anionic Polysaccharides (Pectins, Alginates)
alginates
mannuronic
guluronic
pectin
galacturonic acid
High-methoxyl pectins (HMP) forms gels with
sugar and acid
High-methoxyl pectins (LMP) forms gels in the
presence of divalent cations such as Ca
2+
Form gel in presence of cations such as Ca
2+

Edible coatings
•Chemical composition of edible coating
1.Polysaccharide-Based Coatings: Anionic Polysaccharides (Pectins, Alginates)
Example of pectin coating solution: Pectin + 45%
(pectindrybasis)ofsorbitol+40%(pectindrybasis)
meltedbeeswax→14,000 rpm for 4 min
Respiration rate
5 days shift in climacteric peak
Firmness
Journal of Food Processing and Preservation 32 (2008) 621–643.
Effect of pectin coating on avocado

Edible coatings
•Polysaccharide-Based Coatings:
Chitosan and chitin

Edible coatings
•Chemicalcompositionofediblecoating
1.Polysaccharide-Based Coatings: Chitosan
-Cationic character
-Antimicrobial activity
→ Inhibit microbial
growthinfresh
producesurfaces

Edible coatings
•Chemicalcompositionofediblecoating
1.Polysaccharide-Based Coatings: Chitosan
-Exampleofchitosancoatingsolution:2gchitosan+900mlD.I
water+50mlglacialaceticacid,pH 5.0
Infection rate
Fungal growth inhibition
low molecular weight chitosan, 15 KDa
High molecular weight chitosan, 357 KDa
fungicide
Effect of chitosan coating on citrus
Food Chemistry 100 (2007) 1160–1164

Edible coatings
•Chemicalcompositionofediblecoating
1.Polysaccharide-Based Coatings: Chitosan
CH: chitosan
AVG: aloe vera gel
Coatings2021,11(11), 1366
Coatingreducedweight
lossbyabout5%,and
alsodelayedripeningand
oxidative decay
comparedtotheuncoated
pineapple

Edible coatings
•Thesodiumalginate(SA)coatingwashelpfulforthequalitymaintenanceof
frozenyellowcroaker

Edible coatings
•Chemicalcompositionofediblecoating
2. Protein based coating
-Protein: linear copolymer of 20 amino acids
-Protein film formation: denaturation of protein followed by association of
polypeptides chains through new intermolecular interaction: covalent bonds
and noncovalent(ionic,hydrogen,andvanderWaals)interaction
-Properties:
✓Denaturation,electrostaticcharges,andamphiphiliccharacter
✓BarriertoCO
2andO
2:
✓Barrier to water vapor:

Edible coatings
•Chemicalcompositionofediblecoating
2. Protein based coating
Mostutilizedmaterialsforprotein-basedcoating
Polymers (Basel). 2021 Mar; 13(5): 769

Edible coatings
•Antibacterialeffectofwheyproteincoating+alginatecoatingincorporatedwith
thelactoperoxidasesystem(LPOS)onchickenthighmeat
whey protein–alginate coating with no LPOS (C-0)
whey protein–alginate coating with 2% LPOS (C-2)
whey protein–alginate coating with 4% LPOS (C-4)
whey protein–alginate coating with 6% LPOS (C-6)
whey protein–alginate coating with 8% LPOS (C-8)
Food Sci Nutr. 2018;6:878–883.

Edible coatings
•Chemicalcompositionofediblecoating
3. Lipid based coating
-Notbiopolymers→notabletoformcohesive,self-supportingfilms
-Usedascoatingsorincorporatedintobiopolymerstoformcomposite
films
-Vapor barrier:
-Examples:Waxes, Triglycerides

Edible coatings
Effects on fruits

Edible coatings
Effects on meats/fishes/bakery

Edible coatings
Tags