PLG 500 Penaakulan Statistik dalam pendidikan

Yuvarani749017 35 views 40 slides Jul 10, 2024
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

PMC500


Slide Content

PLG 500 PenaakulanStatistikdalamPendidikan
Statistical Reasoning in Educational Research
DrNooraida Yakob
DrNor AsnizaIshak
DrMuzirahMusa

•Summarising and displaying data, describe
the distribution
–Data distribution. Constructing charts and graphs
–bar chart, histogram, box plot, stem and leaf
plot
–Describing the distribution, calculating mean,
mode and median, standard deviation and
variance, skewness of a distribution.

Data distribution.
Constructing charts and graphs –bar chart, histogram,
box plot, stem and leaf plot

63,59,53,61,58,63, 77,65,59,63
59,59,88,58,59,64,60,64,75,66
62,61,60,70,64,63,59,62,65,76
Mathematics score
•This set of data makes sense when it is simplified
•We can report the number of students with specific scores in
a table
•This number is called frequency

Carta Bar
•Diagram showed frequency
•The height of each bar indicates the frequency of
each category
•The bars are the same width and separated

Histogram
•Showed the frequency of each interval class for
continuous variable
•The width of each bar represents the size of class
interval, the height represents the frequency of class
interval
•The bars have the same width and touch to one
nother

Stem & Leaf Plot
AStem and Leaf Plotis a special table where each data
value is split into a "stem" (the first digit or digits) and a
"leaf" (usually the last digit).

Boxplot
•A Box Plot is the visual representation of the statistical five
number summary of a given data set.
•A Five Number Summary includes:
–Minimum
–First Quartile
–Median (Second Quartile)
–Third Quartile
–Maximum

Box Plot
•A Five Number Summary includes:
–Minimum = 53
–First Quartile = 59
–Median (Second Quartile) = 62.5
–Third Quartile = 65
–Maximum = 88

Example 3-24: Solution
Step 5.
Figure 3.14
PremMann, Introductory Statistics, 7/ECopyright © 2010 John Wiley & Sons. All right reserved

Boxplot
To determine the outliers
Outlieris a value exceed 1.5*IQR form the nearest quartile (1.5 x 6
= 9, Q3 = 65) ; 65 + 9 = 74
Extreme outliers is a value exceed 3*IQR from the nearest quartile
-was labelled as * (3 x 6 =18, Q3 = 65); 65 + 18 = 84
Extreme outliers –ID
13
Outliers –ID 7,19,30
IQR –interquartile
range

Describing the distribution, calculating mean,
mode and median, standard deviation and
variance, skewness of a distribution.

Central Tendency Measurement
Numerical value to represent the center point of
data set
Indicate where most values in a distribution fall
Describe the whole data with one value
Three types :
Mode
Median
Mean

Central Tendency Measurement
Mode = score with the highest frequency
Median = score at the middle when the data is arranged
from smallest to largest
Mean = total score number of score
3, 7, 9, 4, 5, 4, 6, 9, 9
Mode =9(perhatikanmod≠3)
Median =3,4,4,5,6,7,9,9,9
Mean =(3+7+9+4+5+4+6+9+9)/9=6.22

Central Tendency Measurement
Advantages Weaknesses
Min Used the most as it is
stable
Take into account all
data
Suitable for continuous
data
Dipengaruhiolehnilaiekstrim
22, 25, 21, 26, 67
Min =32.20
MedianTidakdipengaruhioleh
nilaiekstrim
Hanyamengambilnilaidi tengah-
tengah
Mod The simplest
measurement
Suitable for discrete data
Some of the data did not have
mode value
11, 14, 19, 16, 25, 36

Measures of Dispersion
A measurement that showed how well the values in
a data set differ from one another or from the
central of the data set
Variance
Standardofdeviation

Varians& SisihanPiawai
Variansmerupakanstatistikyangmengukursejauhmanakahskor-skor
didalamdataberbezadenganmin.
Nilaivariansyangbesarmenunjukkandataberadajauhdaripadamin.
Inibermaksuddatatersebutlebihterserak.Sebaliknya,nilaivarians
yangkecilmenunjukkandataberadahampirdenganmin,yang
bermaksuddatatersebutlebihterkumpul.
Variansbagisatu-satudata,
2
diberikandalamrumus-rumusberikut:

2
=
σ??????−ҧ??????
2
??????
atau
2
=
σ??????
2
??????
−ҧ??????
2
,
denganҧ??????=minskorbagidata tersebut
Sisihanpiawai,
=
.  = varians .

Variance
4, 6, 9, 3, 5, 12, 10Min, ??????ҧ = 7
7
101253964




N
X
x x
2
4 16
6 36
9 81
3 9
5 25
12 144
10 100
x
2
= 411
x
x
(x –ҧ??????) (x –ҧ??????)
2
44 –7 = –3 (–3)
2
= 9
66 –7 = –1 (–1)
2
= 1
9 9 –7 = 2(2)
2
= 4
33 –7 = –4(–4)
2
= 16
55 –7 = –2 (–2)
2
= 4
1212 –7 = 5(5)
2
= 25
1010 –7 = 3(3)
2
= 9
(x –ҧ??????)
2
= 68

2
=
σ??????−ҧ??????
2
??????
=
68
7
=9.71

2
=
σ??????
2
??????
−ҧ??????
2
=
411
7
−7
2
=9.71

Variance & Standard Deviation
Advantages:
More accurate as the calculation involved all values in
the data set
Measure the dispersion of each value from the mean
value in the data set.
The calculation did not involved the square of deviation.
The unit for standard deviation and the unit for data –
same

Skewness Dispersion
Negative skewness –
tail on the left side
Positive skewness –
tail on the right side
Give the shape of distribution

Kasih
Terima
Tags