Polinomis 4t ESO

2,746 views 14 slides Feb 01, 2017
Slide 1
Slide 1 of 14
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14

About This Presentation

Tema de Polinomis a 4t d'ESO. Regla de Ruffini.


Slide Content

Unitat 41: Polinomis
1. Recordatori conceptes
2. Operacions bàsiques
3. Regla de Ruffini
4. Factorització de polinomis
5. Simplificació de fraccions algebraiques
6. Binomi de Newton

1. Recordatori conceptes
a) Nomenclatura Polinomi de grau 4
11x
3
y−7xy
2
+5x−13
Terme
b) Grau d'un polinomi: el més alt dels termes que el formen.
p56 E1, 3
Un polinomi és la suma indicada de diversos monomis no
semblants. ("poli"="molts", "mono"="un de sol")
Terme TermeTerme
Grau 4 Grau 3Grau 1Grau 0
c) Oposat d'un polinomi: s'obté canviant els signes de cada terme
d) Valor numèric d'un polinomi: valor que pren el polinomi quan en
coneixem les variables

2. Operacions bàsiques
2.1 Suma:
A=5x
3
−1
Per sumar o restar polinomis, només ens caldrà sumar o restar els
termes semblants. Els disposarem en columnes, de grau major a menor.
Exemple:
B=7x
3
−5x
2
+3
A+B
5x
3
7x
3
−5x
2
+3+
−1
12x
3
−5x
2
+2

2.2 Resta:
A=5x
3
−1
Restar és el mateix que sumar l'oposat. Així, procedirem de la mateixa
manera però sumant l'oposat del polinomi que actua de subtrahend.
Exemple:
B=7x
3
−5x
2
+3
A−B=A+(−B)
5x
3
−7x
3
+5x
2
−3+
−1
−2x
3
+5x
2
−4

P(x)=3x
2
−2x+7
E2, 1, 2, 26, 27, 28
Exemple: Q(x)=3x−5
P(x)·Q(x)
x
−15x
2
+10x−35
3x
2
−2x+7
3x−5
9x
3
−6x
2
+21x
9x
3
−21x
2
+31x−35
2.3 Multiplicació:

p57 E3, 5, 34
P(x) Q(x)
C(x)
R(x)
4x
3
+2x
2
−4x+3
2.4 Divisió de polinomis
DividendDivisor
Quocient
Residu
-Dividir 1r terme de P(x) entre el 1r terme de Q(x) per obtenir 1r de C(x)
-Multiplicar resultat per Q(x) i restar-lo a P(x) per obtenir nou dividend.
-Repetir operació fins que R(x) sigui de menys grau que Q(x).
2x
2
−x+1
2x−4x
3
+2x
2
−2x
4x
2
−6x+3
+2
−4x
2
+2x−2
−4x+1

3. Regla de Ruffini
La regla de Ruffini ens permet fer divisions ràpidament quan el divisor
és un binomi del tipus “x – a”, essent “a” un nombre enter.
Paolo Ruffini (1765-1822)
Metge, filòsof i matemàtic.
Primer fer (x
3
+1):(x-2) com fins ara.
1 0 0 1
2
1
2
2
4
4
8
9
El quocient és x
2
+ 2x + 4 i el residu és 9.
8, 9, 10, 37, 38, 40

4. Factorització de polinomis
Un nombre “a” ésarrel d'un polinomi P(x) si es compleix que P(x) és
divisible per “x – a”. La divisió ha de tenir un residu igual a 0.
Recordatori factorització de nombres naturals.
4.1 Arrels d'un polinomi
-Quines són les arrels del polinomi P(x) = x
2
+ 2x – 3 ?
Propietats:
-L'arrel (nombre “a”) ha de serdivisor del terme independent.
-El nombre d'arrelsmai serà superior al grau del polinomi.
p59 E5
1r: Poden ser:Div (-3) = {+1,-1,3,-3}

1 2 -3
+1
1
1
3
3
0
-Quines són les arrels del polinomi P(x) = x
2
+ 2x – 3 ?
1r: Poden ser:Div (-3) = {+1,-1,3,-3}
2n: Anar comprovant per Ruffini
1 2 -3
- 3
1
-3
-1
3
0
3r: Les arrels són 1 i -3
p59 11, 12, 49, 50, 51

1 2 -3
+1
1
1
3
3
0
-Quines són les arrels del polinomi P(x) = x
2
+ 2x – 3 ?
1r: Poden ser:Div (-3) = {+1,-1,3,-3}
2n: Anar comprovant per Ruffini
1 2 -3
- 3
1
-3
-1
3
0
3r: Les arrels són 1 i -3
p59 11, 12, 49, 50, 51

Factoritzar un polinomi consisteix en anar trobantbinomis divisors de
tipus “x – a” fins a arribar a un polinomi irreductible, essent “a” una arrel del
polinomi.
4.2 La factorització d'un polinomi
-Exemple: factoritzar el polinomi P(x) = x
4
– 2x
3
+ 3x
2
+ 2x – 4 ?
1r: Les arrels poden ser:Div (-4) = {+1,-1, 2, -2, 4,-4}
2n: Anar encadenant Ruffini's, començant de nou cada vegada:
1 -2 3 2 -4
1
1
1
-1
-1
2
2
4
4
0
-1 -1 2 -4
1 -2 4 0

-Exemple: factoritzar el polinomi P(x) = x
4
– 2x
3
+ 3x
2
+ 2x – 4 ?
p61 fact. els del 17, E9b, 20 extret, 63, 64
1r: Les arrels poden ser:Div (-3) = {+1,-1, 2, -2, 4,-4}
2n: Anar encadenant Ruffini's, començant de nou cada vegada:
1 -2 3 2 -4
1
1
1
-1
-1
2
2
4
4
0
-1 -1 2 -4
1 -2 4 0
3r: Interpretar el resultat:
P(x) = x
4
– 2x
3
+ 3x
2
+ 2x – 4 = (x – 1)·(x + 1)·(x
2
– 2x + 4)

5. Simplificació de fraccions algebraiques
-Una fracció algebraica és aquella formada pel numerador i
denominador en forma de polinomis.
-Per simplificar-lesfactoritzarem els dos polinomis i n'eliminarem els
factors comuns.
Exemple:
p63 23,24,69,72,73
x
2
+x
x
2
+2x+1
x
2
+x=x·(x+1)
El numerador:
(no puc fer Ruffini,
extrec factor comú)
Exemple:
x
2
+2x+1=(x+1)·(x+1)
El denominador:
(faig Ruffini)
1 2 1
- 1
1
-1
1
-1
0
=
x·(x+1)
(x+1)·(x+1)
=
x
x+1

6. El binomi de Newton
p60 E7, 14, 16, 55, 57
(x+y)
0
=
(x+y)
1
=
(x+y)
2
=
(x+y)
3
=
(x+y)
4
=
1
x+y
(x+y)(x+y)=
x
4
+4x
3
y+6x
2
y
2
+4xy
3
+y
4
x
2
+xy+yx+y
2
=x
2
+2xy+y
2
(x+y)(x
2
+2xy+y
2
)=(x
3
+2x
2
y+xy
2
+yx
2
+2xy
2
+y
3
)
=x
3
+3x
2
y+3xy
2
+y
3
1
11
2
33
1
1
1
1
1
51
6
1010
1
15
4 4
Triangle de
Tartaglia:
(a+b)
n
=A·a
n
+B·a
n−1
b+C·a
n−2
b
2
+...+X·b
n