Scenario: NEW TABLE=STUDENT TABLE=DataTable("IDNO", STRING, "NAME", STRING ,{
{"STU1","AKASH"}, {" STU2","VISHU"}, {" STU3","RAGHU"}, {"STU4","KIRAN"}, {" STU5","KRISH"} } )
EXCEPT
Returns the rows of one table which do not appear in another table. Syntax
EXCEPT(<table_expression1>, <table_expression2>)
Scenario:
NEW TABLE ST1 = DataTable("IDNO", STRING, "NAME", STRING ,{ {"STU1","AKASH"}, {" STU2","VISHU"}})
NEW TABLE ST2 = DataTable("IDNO", STRING, "NAME", STRING ,{ {"STU1","AKASH"}, {"STU3","KIRAN"}} )
NOW: EXSTU1STU2 = EXCEPT('NEW TABLE ST1','NEW TABLE ST2')
UNION
Creates a union (join) table from a pair of tables.
Syntax: UNION(<table_expression1>, <table_expression2> [,<table_expression>]…)
Scenario: USTU1_STU2= UNION('NEW TABLE ST1','NEW TABLE ST2')
INTERSECT
Returns the row intersection of two tables, retaining duplicates.
Syntax : INTERSECT(<table_expression1>, <table_expression2>)
Scenario:INTSTU1_STU2= INTERSECT('NEW TABLE ST1','NEW TABLE ST2')
GENERATESERIES
Returns a single column table containing the values of an arithmetic series, that is, a sequence of values
in which each differs from the preceding by a constant quantity. The name of the column returned is
Value.
Syntax: GENERATESERIES(<startValue>, <endValue>[, <incrementValue>])
Scenario:New Table= GENERATESERIES(1,10,2)
Returns a table with a single column, starting with 1 and increment by 2.
GROUP BY
The GROUPBY function is similar to the SUMMARIZE function. However, GROUPBY does not do an
implicit CALCULATE for any extension columns that it adds. GROUPBY permits a new function,
CURRENTGROUP(), to be used inside aggregation functions in the extension columns that it adds.
GROUPBY attempts to reuse the data that has been grouped making it highly performant.
Syntax: GROUPBY (<table>, [<groupBy_columnName1>], [<name>, <expression>]… )