Power System Analysis

shareapd 127 views 174 slides Nov 13, 2023
Slide 1
Slide 1 of 174
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174

About This Presentation

Loadflows
Short Circuit Analysis
BUs Impedane matrix
Power System Stability are well explained.


Slide Content

POWER
SYSTEM
ANALYSIS
III B.TechII Semester
Course Teacher:
Dr. MAHABOOB SHAREEF SYED

Students should able to

Necessityofpowerflowstudies.

Derivationofstaticpowerflowequations.

Powerflowsolutionusing

Gauss-SeidelMethod

NewtonRaphsonMethod
(Rectangularandpolarcoordinatesform)

Decoupled

FastDecoupledmethods
Power Flow Studies

Students should able to
Power flow studies are undertaken for various reasons, some of
which are the following:
1.The line flows
2. The bus voltages and system voltage profile
3. The effect of change in configuration and incorporating new
circuits on system loading
4. The effect of temporary loss of transmission capacity and/or
generation on system loading and accompanied effects
5. The effect of in-phase and quadrativeboost voltages on system
loading
6. Economic system operation
7. System loss minimization
8. Transformer tap setting for economic operation
9.Possibleimprovementstoanexistingsystembychangeof
conductorsizesandsystemvoltages.
NECESSITY OF POWER
FLOW STUDIES

Students should able to

Loadflowstudiesareoneofthemostimportant
aspectsofpowersystemplanningandoperation.

Theloadflowgivesusthesinusoidalsteadystateofthe
entiresystem-voltages,realandreactivepower
generatedandabsorbedandlinelosses.

Sincetheloadisastaticquantityanditisthepower
thatflowsthroughtransmissionlines,itispreferto
callthisPowerFlowstudiesratherthanloadflow
studies.
NECESSITY OF POWER
FLOW STUDIES

Students should able to

Throughtheloadflowstudiesitcanbeobtainedthevoltage
magnitudesandanglesateachbusinthesteadystate.

itisrequiredtoheldthebusvoltageswithinaspecified
limits.

Oncethebusvoltagemagnitudesandtheiranglesare
computedusingtheloadflow,therealandreactivepower
flowthrougheachlinecanbecomputed.

Alsobasedonthedifferencebetweenpowerflowinthe
sendingandreceivingends,thelossesinaparticularline
canalsobecomputed.

Furthermore,fromthelineflowwecanalsodeterminethe
overandunderloadconditions.
NECESSITY OF POWER
FLOW STUDIES

Students should able to
Thepowersystemnetworkisasuchalargeinterconnected
network,wherevariousbusesareconnectedthrougha
transmissionlines.
Atanybus,complexpowerisinjectedintothebusbythe
generatorsandcomplexpowerisdrawnbytheloads.
ThecomplexpowerS
iatanybusiisgivenby,
WhereV
iisvoltageatbusiwithangleδ
i.
V
i=|V
i|∟δ
i=|V
i|(cosδ
i+jsinδ
i)
Y
ik=G
ik+jB
ik
POWER FLOW
EQUATIONS

Students should able to
POWER FLOW
EQUATIONS

Students should able to
POWER FLOW
EQUATIONS

Students should able to
Thegeneralpracticeinpower-flowstudiesisto
identifytypesofbusesinthenetwork.
Theloadflowproblemconsistsofdeterminingthe
magnitudesandphaseanglesofVoltagesateach
busandactiveandreactivepowerflowineachline.
Whilesolvingpowerflowproblem,thesystemis
assumedtobeoperatingunderbalancedcondition.
Thequantitiesassociatedwitheachbusare:δ
i,
|V
i|,P
iandQ
i.
TYPES OF BUSES

Students should able to
Dependinguponwhichtwovariablesare
specifiedapriori,thebusesareclassifiedinto
threecategories.
Loadbus:Anongeneratorbusiscalledload
bus.Atthisbus,therealpowerdemandand
reactivepowerdemands arespecified.The
parametersistobedeterminedareδ
iand|V
i|.A
loadbusisoftencalledasP-Qbus.
TYPES OF BUSES

Students should able to
VoltagecontrolledBus:Anybusofthesystem
atwhichthevoltagemagnitudeiskeptconstant
issaidtobevoltagecontrolled.
Ateachbustowhichthereisagenerator
connected,themegawattgenerationcanbe
controlledbyadjustingtheprimemover,andthe
voltagemagnitudecanbecontrolledbyadjusting
thegeneratorexcitation.
Thesebusesarethegeneratorbuses.
TYPES OF BUSES

Students should able to
Atthesebuses,therealpowergenerationand
voltagemagnitudesarespecified.Theothertwo
parametersδ
iandreactivepowershastobe
determined.
ThesebusesarealsocalledP-Vbus.
Someloadbuseswithcontinuousreactive
powervariationcapabilityarealsocalled
voltagecontrolledbusatwhichtherealpower
generationissimplyzero.
TYPES OF BUSES

Students should able to
SlackBus:Thisbusisalsocalledslackbusorswing
bus,whichistakenasreferencetotheentiresystem.
Thevoltageangleoftheslackbusservesas
referencefortheanglesofallotherbusvoltages.
Therealandreactivepowersarenotspecifiedat
thisbus.
GenerallyBus1isconsideredtobeaslackbus.
Thevoltagemagnitudeandphaseanglesare
specifiedatthisbus.
TYPES OF BUSES

Students should able to
Inanyloadflowstudy,thelossesinthesystem
cannotbeknownapriori,withoutthesolutionof
voltagesatallthebuses.
Theslackbussuppliesthedifferencebetweenthe
totalsystemloadpluslossesandthesumofthe
complexpowersattheremainingbuses.
Slackbusisageneratorbusasitneedstosupply
thelosses.
Thebusconnectedtothelargestgeneratingstation
isnormallyselectedasslackbus.
TYPES OF BUSES

Students should able to
TYPES OF BUSES

Students should able to
TheGSmethodismostpopulariterative
algorithmforsolvingnonlinearalgebraic
equations.
Ateverysubsequentiteration,thesolutionis
updatedtillconvergenceisreached.
Itisappliedtopowerflowproblemasdescribed
insubsequentsections.
GAUSS-SEIDEL
(GS) METHOD

Students should able to
GS METHOD

Students should able to
Startingfromaninitialestimateofallthebus
voltages,themostrecentvaluesofthebusvoltages
aresubstituted.
Oneiterationofthemethodinvolvescomputation
ofallbusvoltages.
Thevaluesoftheupdatedvoltagesareusedinthe
computationofsubsequentvoltagesinthesame
iteration.
Iterationsarecarriedouttillthemagnitudesofall
busvoltagesdonotchangemorethanthe
tolerancevalue.
GS METHOD

Students should able to
InGSmethod,numberofiterationsincreases
withincreaseofsizeofthesystem.
Itcanbereduced,ifthecorrectionsinvoltage
ateachbusisaccelerated.
Therefore,amultiplicationfactorcalled
accelerationfactor(α)isintroduced.
Generally,αistakenbetween1.6to2.0.
Awrongvalueofαmayleadtodivergence.
GS METHOD

Students should able to Problem
GS METHOD

Students should able to
InthefirststepformulateY
bus
Problem
GS METHOD

Students should able to Problem
GS METHOD

Students should able to Problem
GS METHOD

Students should able to Problem
GS METHOD

Students should able to Problem
GS METHOD

Students should able to Problem
GS METHOD

Students should able to
Case(ii):
IncaseofanyPVBusinasystem:
1.CalculateQatthatbus.
2.CalculateVbyusingaboveQvalue.
3.Since,itisaPVbus|V|=Vspecified,
butangleonlyhastobeupdated.
GS METHOD

Students should able to
Case(iii):
IncaseQlimitsspecifiedatPVBusinasystem:
1.CalculateQatthatbus.
2.CheckforQlimits,Ifthelimitsarenotsatisfied,
treatthatPVbusasPQbuswithQasfollows:
GS METHOD

Students should able to
Themostwidelyusedmethodforsolving
simultaneousnonlinearalgebraicequations.
NEWTON –RAPHSON
METHOD

Students should able to
NEWTON –RAPHSON
METHOD

Students should able to
NEWTON –RAPHSON
METHOD (Polar Co-ordinates)

Students should able to
NEWTON –RAPHSON
METHOD (Polar Co-ordinates)

Students should able to
Intheaboveequation,bus1isassumedtobe
slackbus.TheJacobianmatrixgivesthe
linearizedrelationbetweensmallchangesin
withsmallchangesinrealand
reactivepower Elementsofjacobian
matrixarethepartialderivativesofpowerflow
equations.Itcanbewrittenas:
NEWTON –RAPHSON
METHOD (Polar Co-ordinates)

Students should able to
NEWTON –RAPHSON
METHOD (Polar Co-ordinates)

Students should able to
NEWTON –RAPHSON
METHOD (Polar Co-ordinates)

Students should able to NEWTON –RAPHSON
METHOD (Rectangular Co -
ordinates)

Students should able to NEWTON –RAPHSON
METHOD (Rectangular Co -
ordinates)

Students should able to NEWTON –RAPHSON
METHOD (Rectangular Co -
ordinates)

Students should able to NEWTON –RAPHSON
METHOD (Rectangular Co -
ordinates)

Students should able to NEWTON –RAPHSON
METHOD (Rectangular Co -
ordinates)

Students should able to NEWTON –RAPHSON
METHOD (Rectangular Co -
ordinates)

Students should able to NEWTON –RAPHSON
METHOD (Rectangular Co -
ordinates)

Students should able to Problem
NR METHOD

Students should able to Problem
NR METHOD

Students should able to Problem
NR METHOD

Students should able to Problem
NR METHOD

Students should able to Problem
NR METHOD

Students should able to Problem
NR METHOD

Students should able to Problem
NR METHOD

Students should able to
Whensolvinglargescalepowersystem,analternativestrategyfor
improvingcomputationalefficiencyandreducingcomputer
storageisintroducedcalledDecoupledpowerflowmethod.
ThismakesuseofanapproximateversionofNRmethod.
Thebasicprincipleunderlyingthedecoupledapproachisbased
ontwoobservations:
Changeinthevoltageangleδatabusprimarilyaffectstheflowof
realpowerPinthetransmissionlinesandleavestheflowof
reactivepowerQrelativelyunchanged.
ChangeinthevoltagemagnitudeIVIatabusprimarilyaffectsthe
flowofreactivepowerQinthetransmissionlinesandleavesthe
flowofrealpowerPrelativelyunchanged.
Decoupled Load
flow

Students should able to
Thefirstobservationstatesessentiallythatis
dP/dδmuchlargerthandQ/dδ,whichwenow
considertobeapproximatelyzero.
ThesecondobservationstatesthatdQ/d|v|is
muchlargerthandP/d|V|,whichisalso
consideredtobeapproximatelyzero.
Incorporationoftheseapproximationsintothe
jacobian:
J
2=0andalsoJ
3=0;
Decoupled Load
flow

Students should able to Decoupled Load
flow

Students should able to
Theseequationsaredecoupledinthesensethatthe
voltage-anglecorrections∆δarecalculatedusingonly
realpowermismatches∆P,whilethevoltage-magnitude
correctionsarecalculatedusingonly∆Qmismatches.
However,thesetwointerdependent.
Butthisschemewouldstillrequireevaluationand
factoringofthetwocoefficientmatricesateach
iteration.
Toavoidsuchcomputations,weintroducefurther
simplifications,whicharejustifiedbythephysicsof
transmissionlinepowerflow.
Decoupled Load
flow

Students should able to
Inawell-designedandproperlyoperatedpower
transmissionsystem:
Theangulardifferences(δ
i-δ
j)betweentypical
busesofthesystemareusuallysosmallthat
Cos(δ
i-δ
j)=1;Sin(δ
i-δ
j)=(δ
i-δ
j);
The line susceptancesB
ijare many times larger
than the line conductances, G
ij so that,
G
ijSin(δ
i-δ
j) << B
ijCos(δ
i-δ
j) << B
ij
Fast Decoupled
Load flow

Students should able to Fast Decoupled
Load flow

Students should able to Fast Decoupled
Load flow

Students should able to Fast Decoupled
Load flow

Students should able to Fast Decoupled
Load flow -Problem

Students should able to Fast Decoupled
Load flow -Problem

Students should able to Fast Decoupled
Load flow -Problem

Students should able to Fast Decoupled
Load flow -Problem

Students should able to Limitations of GS
method

Students should able to Limitations & Merits
of NR method

Students should able to
TheBusimpedancematrix(Z
BUS)canbe
formulatedbytwomethods.
1.FormulatingY
BUSandtakingtheinverse.
2.Basedonalgorithm.
Byusingsystemparametersandcodedbus
numbers.
Constructionofthenetworkiscarriedoutby
addingoneelementatatime.
Z–BUS FORMULATION

Students should able to
Considerthefollowingpartialnetworkwith
‘m’no.ofbusesand‘0’asthereference
node.
Algorithm for
Z–BUS FORMULATION
Theperformanceequationinthe
busframeofreference:
E
BUS=Z
BUSI
BUS
E
BUSisthevectorofbusvoltagesofsize
mx1measuredw.r.toreferencenode.
I
BUSisthevectorofbuscurrentsofsize
mx1.

Students should able to
The voltage equations can be written as:
E
1= Z
11I
1+Z
12I
2+…..+Z
1kI
k+….+Z
1mI
m
.
.
E
k= Z
k1I
1+Z
k2I
2+…..+Z
kkI
k+….+Z
kmI
m
.
.
E
m= Z
m1I
1+Z
m2I
2+…..+Z
mkI
k+….+Z
mmI
m
ByinjectingthecurrentsatK
th
bus,bykeepingall
otherbuscurrentinjectionsas‘0’.
I
i = 0 , i≠k
Algorithm for
Z–BUS FORMULATION

Students should able to
E
k= Z
kkI
k
E
i= Z
ikI
k
Now I
k= 1.0 pu
E
k= Z
kk
E
i= Z
ik
The Z
Busformulation can be carried out in
two aspects.
Whenanelementp-qisaddedtothepartial
network,itmaybebranchoralinkas
showninfigures.
Algorithm for
Z–BUS FORMULATION

Students should able to
Algorithm for
Z–BUS FORMULATION
Pisanexistingbusin
apartialnetworkand
qisanewbus,this
results into p-q
branch.
Bothpandqare
existinginthepartial
networkinthiscase
p-qisalink.

Students should able to
Letusassume,theaddedbranchp-qismutually
coupledwithsomeelementsofthepartialnetwork.
Theperformanceequationwiththeaddedbranch
is:
Addition of a
Branch

Students should able to
Iftheelementsofthenetworkarebilateralpassive
elements:Z
qi=Z
iq
Addition of a
Branch
Where,Z
qiisthevoltage
atq
th
busbyinjecting
1.0pucurrentati
th
bus.
Thevoltageacrossthe
addedelementis:
V
pq=E
p-E
q

Students should able to
Thecurrentthroughtheelementpqis:
I
pq:Currentthroughtheelementpq
I
rs:Currentthroughtheelementsofpartialnetwork.
V
pq:Voltageacrosstheelementpq
V
rs:Voltageacrosstheelementsofpartialnetwork.
Y
pqpq=Selfadmittanceofaddedelement.
Y
pqrs=Vectorofmutualadmittancebetweenpq-rsof
partialnetworks.
Y
rsrs=Primitiveadmittanceofpartialnetwork
Y
rspq=[Y
pqrs]
T
Addition of a
Branch

Students should able to
Since pqis a branch, i
pq= 0 but V
pq≠ 0. V
rs= E
r–E
s
Addition of a
Branch

Students should able to
ToobtainZ
qq,inject1p.ucurrentatq
th
nodeandat
remaining‘0’
Addition of a
Branch

Students should able to Addition of a
Branch

Students should able to
Thelinkisanelementaddedinbetweentwo
existingbuses.
Addition of a
Link
Firstly,anvoltage
source ‘e
l’ is
connectedinseries
withtheadded
element.
This creates a
fictitiousnode'l'.
Thee
lisselected
suchthatI
pq=0.
Sothatthep-lis
treated as an
additionofbranch.

Students should able to
Theperformanceequationsaregivenby:
Addition of a
Link

Students should able to Addition of a
Link

Students should able to Addition of a
Link

Students should able to Addition of a
Link

Students should able to
Since,thenodelisaddedwhichisafictitious,itseffectisto
beeliminated.Mathematically,itcanbedonebyshort
circuitingtheseriesvoltagesource.
Addition of a
Link

Students should able to
FormZ
BUSforthenetworkshown.
Problem

Students should able to
Problem

Students should able to
Problem

Students should able to
Problem

Students should able to
Problem

Students should able to
Problem

Students should able to
Problem

Students should able to
Thechangeofbusimpedancematrixincludesinfollowing
cases:
Removalofelements:
ItcanbedonebymodifyingthealreadyexistingZbus.
Byaddinganelementinparallel,whoseimpedanceisequal
tonegativeoftheimpedanceoftheelementtoberemoved,if
theelementisnotmutuallycoupledtoanyoftheelementin
thepartialnetwork.
Thisisnothingbutadditionofalink.
Modification of Z-Bus

Students should able to
Changesintheimpedanceofelements:
BYaddinganlinkinparallelwiththeelementsuchthatthe
equivalentimpedanceofthetwoelementsisthedesired
value.
Modification of Z-Bus

Students should able to

Transients on a Transmission line-Short circuit
of synchronous machine(on no-load)

3–Phase short circuit currents and reactances
of synchronous machine

Short circuit MVA calculations

Series reactors and their Selection of reactors.
Symmetrical Fault
Analysis

Students should able to

Anumberofundesirablebutunavaoidable
incidentscantemporarilydisruptthis
condition.Suchincidentscanbesaidasa
fault.

Afaultinacircuitisanevent,whichcauses
adeviationfromthenormalflowofcurrent.

Thisdeviatesthepowersystembehavior.
Symmetrical Fault
Analysis

Students should able to
A fault may occur on a power system due to
number of reasons.
Some of them are listed below:

Insulationfailureofequipment

Flashoveroflinesinitiatedbylightning
stroke.

Fallingofatreealongaline.

Overloadingofundergroundcables.

WindandIceloadingonthetransmission
line.

Accidentalfaultyoperation.
Reasons for fault

Students should able to

Whenafaultoccursonasystem,thesystemgetshort
circuited.

Thecurrentflowingintothefaultdependsonthepath
metbythecurrent,ontheseverityandnearnessof
faulttothesourcesofpower.

Thesystemmustbeprotectedagainstflowofheavy
shortcircuitcurrents,otherwiseitleadstothedamage
ofelectricalequipment.

Thiscanbedonebyseparatingthefaultypartofthe
systemfromthehealthypartbyproperlyselecting
protectingdevice.
Faults

Students should able to
Basictwomaintypesoffaultsare:
Seriesfaults:Thefaultoccursthroughahighimpedance
inserieswiththeline.
Ex:Opencircuit,Thisoccurswhenacircuitbreakerora
lineisopened.
Shuntfaults:Inthistypealowimpedanceisconnected
betweenthelineandground.
Ex:Shortcircuitoflines.
Protectiverelaysareemployedtotripthecircuitbreaker
underfaultycondition.
Types of Faults

Students should able to
Theshuntfaultsareagainclassifiedinto:
1.Symmetricalfaults:

Inthisallthethreephasesareshortcircuitedto
eachotherandtotheearthalso.

Thesearebalancedandsymmetrical.

Thevoltagesandcurrentsremainsbalancedafter
theoccurrenceoffaultalso.

Itissufficienttoconsideronephaseforthefault
analysis.Ex:3-Phaseshortcircuitfaults.
Types of Faults

Students should able to
2.UnSymmetricalfaults:
Inthistypeonlyoneortwophasesonlyinvolvesin
afault.
Thevoltagesandcurrentsbecomesunbalanced
aftertheoccurrenceofthefault.
Eachphasehastobeanalyzedseparately,forthe
faultcurrentcalculations.
Ex:LinetoGround(LG),LinetoLine(LL/2L),
Doublelinetoground(LLG/2L-G).
Types of Faults

Students should able to

Thecomputation offaultcurrentsfor
unsymmetrical faultsinvolvesmethod of
symmetricalcomponents.

Frequencyoffaultsindecreasingseverity
Types of Faults
Type of fault Frequency of
occurrence
Three Phase faults 5 %
LLG 10 %
LL 15 %
LG 70 %

Students should able to
SYNCHRONOUS
MACHINE (ON NO LOAD)

Students should able to
SYNCHRONOUS
MACHINE (ON NO LOAD)

Students should able to
SYNCHRONOUS
MACHINE (ON NO LOAD)

Students should able to
SYNCHRONOUS
MACHINE (ON NO LOAD)

Students should able to
SYNCHRONOUS
MACHINE (ON NO LOAD)

Students should able to
SYNCHRONOUS
MACHINE (ON NO LOAD)

Students should able to
SYNCHRONOUS
MACHINE (ON NO LOAD)

Students should able to ShortCircuit
Capacity (SCC)

Students should able to ShortCircuit
Capacity (SCC)

Students should able to
Problems

Students should able to
Problems

Students should able to
Problems

Students should able to TRANSIENT ON A
TRANSMISSION LINE

Students should able to TRANSIENT ON A
TRANSMISSION LINE

Students should able to TRANSIENT ON A
TRANSMISSION LINE

Students should able to TRANSIENT ON A
TRANSMISSION LINE

Students should able to
Thecurrentlimitingreactorisaninductivecoilhavinga
largeinductivereactancesincomparisontotheir
resistanceandisusedfor

limitingshortcircuitcurrentsduringfaultconditions.

Reducethevoltagedisturbancesontherestofthe
system.
Itisinstalledinfeedersandties,ingeneratorsleads,and
betweenbussections,forreducingthemagnitudeof
shortcircuitcurrentsandtheeffectoftherespective
voltagedisturbance.
Current Limiting
Reactor

Students should able to
LocationofReactors

Reactorsarelocatedatdifferentlocationinapower
systemforreducingtheshortcircuitcurrent.These
reactorsmaybeconnectedinserieswiththe
generators,feedersorinbus-barsasexplainedbelow.

GeneratorsReactors

FeedersReactors

Bus-BarReactor
Current Limiting
Reactor

Students should able to
Generators Reactors
Generatorreactorsareinserted
betweenthegeneratorandthe
generatorbus.Such reactors
protectthemachinesindividually.
Inpowerstationgenerator,reactors
areinstalledalongwiththe
generators.Themagnitude of
reactorsisapproximatelyabout
0.05 perunit.The main
disadvantagesofsuchtypeof
reactorsarethatifthefaultoccurs
ononefeeder,thenthewholeofthe
systemwillbeadverselyaffectedby
it

Students should able to
Feeder Reactors
Reactors,whichisconnectedin
serieswiththefeederiscalled
feedersreactor.Whenthefault
occursonanyonefeeder,then
thevoltagedropsoccuronlyinits
reactorsandthebusbarisnot
affectedmuch.Hence the
machinescontinuetosupplythe
load.Theotheradvantageisthat
thefaultoccursonafeederwill
notaffecttheothersfeeders,and
thustheeffectsoffaultare
localized
Thedisadvantageofsuchtype
ofreactorsisthatitdoesnot
provideanyprotectiontothe
generatorsagainstshortcircuit
faultsoccursacrossthebus
bars.Also,thereisaconstant
voltagedropandconstant
powerlossinreactorsduring
normaloperatingconditions.

Students should able to
Bus-BarReactors(RingSystem)
Bus-barreactorsareusedtotietogetherthe
separatebussections.Inthissystemsections
aremadeofgeneratorsandfeedersandthese
sectionsareconnectedtoeachothertoa
commonbusbar.
Insuchtypeofsystemnormallyonefeederisfed
fromonegenerator.Innormaloperating
conditionsasmallamountofpowerflows
throughthereactors.Thereforevoltagedropand
thepowerlossinthereactorislow.Thebusbar
reactor,therefore,madewithhighohmic
resistancesothatthereisnotmuchvoltagedrop
acrossit.
Bus-Bar Reactors

Students should able to
Bus-Bar Reactors
Whenthefaultoccursonany
one feeders,onlyone
generatorfeedsthefaultwhile
thecurrentoftheother
generatorislimitedbecause
ofthepresenceofthebus-bar
reactors.
Theheavycurrentandvoltage
disturbancescausedbya
shortcircuitonabussection
arereducedandrestrictedto
thatfaultysectiononly.The
onlydrawbackofsuchtypeof
reactoristhatitdoesnot
protect the generators
connectedtothefaulty
sections.

Students should able to
Bus-bar Reactors (Tie-
Bus System)
Thisisthemodificationoftheabove
system.Intie-bussystem,the
generatorisconnectedtothe
common bus-barthroughthe
reactors,andthefeederisfedfrom
generatorside.
Theoperationofthesystemis
similartotheringsystem,butithas
gotadditionaladvantages.
Inthissystem,ifthenumberof
sectionsisincreased,thefault
currentwillnotexceedacertain
value,whichisfixedbythesizeof
theindividualreactors

POWER SYSTEM STABILITY

Stability
•Definition (IEEE / CIGRE):
Powersystemstabilityistheabilityofanelectric
powersystem,foragiveninitialoperatingcondition,
toregainastateofoperatingequilibriumafterbeing
subjectedtoaphysicaldisturbance,withmostsystem
variablesboundedsothatpracticallytheentire
systemremainsintact.
•Thedisturbancesmentionedinthedefinitioncouldbe
faults,loadchanges,generatoroutages,lineoutages,
voltagecollapseorsomecombinationofthese.

Classification of Power system
stability

•Thestudyofsteadystatestabilityisbasicallyconcernedwith
thedeterminationoftheupperlimitofmachineloadings
beforelosingsynchronism,providedtheloadingisincreased
gradually.
•Thesystemissaidtobedynamicallystableiftheoscillations
donotacquiremorethancertainamplitudeanddieout
quickly.
–Dynamicstabilitycanbesignificantlyimprovedthroughtheuseof
powersystemstabilizers.
•Foralargedisturbancesinangulardifferencesmaybeso
largeastocausethemachinestofallingoutofstep.This
typeofinstabilityisknownastransientinstabilityandisa
fastphenomenon.

Stability Classification

Dynamics of a synchronous Machines
•Inertiaconstant:Itisdefinedastheratioof
energystoredinmegajoulestotheratingofthe
machinesinMVA.
•Energystored=HxG
•Kineticenergystoredbytherotatingbodyis
givenby:

•On comparing above 2 expressions,

Swing Equation
•TheSwingEquationofa
generatordescribesthe
relativemotionbetween
therotoraxisandthe
synchronouslyrotatingstator
filedaxiswithrespecttotime.
•itdescribestherotordynamicsforasynchronousmachine.
•Itisasecond-orderdifferentialequation.
•Thisequationisveryhelpfulinanalyzingthestabilityof
connectedmachines.

It is called the swing equation.

Swing Equation for coherentMachines:

Swing Equation for Non -coherent
Machines:

Power –Angle Curve

Steady state stability –Small Disturbances

Transient Stability
•Itinvolvestofindwhetherthesystemretaineditssynchronism
aftermachinehasbeensubjectedtoseveredisturbances.
•Thedisturbancesmaybesuddenapplicationofload,lossof
generation,lossoflargeloadoroccurrenceoffaultona
system.
•Intheseinstantstheswingequationbecomeshighlynon
linearanddifficulttosolve.
•AmethodknownasEqualAreaCriterionisusedforaquickly
predictionofstability.
•Thismethodisapplicabletoonemachineconnectedtoinfinite
busortwomachinesystem.

Equal Area Criterion

Applications of Equal Area Criterion
TheEqualAreaCriterioncanbeimplyinthefollowing
casesandthetransientstabilityanalysiscanbe
performed.
•Suddenchangeinmechanicalinput.
•Suddenlossofoneoftheparallellines.
•Suddenshortcircuitononeoftheparallellines.
Shortcircuitatoneend
Shortcircuitawayfromthelineends

Sudden change in mechanical input
•Consider the following system SMIB.
•The electrical power transmitted is given by

Critical clearing time and Critical clearing angle
•ConsiderasystemoperatingwithmechanicalinputP
m
atsteadyangleofδ
0.
•Ifa3phasefaultoccursatpointpoftheoutgoing
radialline,theelectricaloutputofthegenerator
instantlyreducestozero.i.e.P
e=0.

Methods to improve Steady State Stability
1.Reductionoftransferreactance
•Apowersystemwhichhasalowervalueoftransferreactancecan
havebettersteady-statestabilitylimit.Thiscanbeachievedby:
i)useofparallellines
ii)useofseriescapacitors
•Ifthepowerhastobetransferredthroughlongdistance
transmissionlines,useofparallellinesreducetransferreactanceas
wellasimprovevoltageregulations.
•Similarlyseriescapacitorsaresometimesemployedinlinestoget
thesamefeatures.
2.IncreaseinthemagnitudesofEandV.
Higherandfastfieldexcitationsystemenhancessteady-state
powerlimits

Methods to improve Transient stability
•Transientstabilityofthesystemcanbeimprovedbyincreasingthesystemvoltage.
•IncreaseintheX/Rratiointhepowersystemincreasesthepowerlimitoftheline.Thus
helpstoimprovethestability.
•Highspeedcircuitbreakershelpstoclearthefaultasquickaspossible.Thequickerthe
breakeroperates,thefasterthefaultclearedandbetterthesystemrestorestonormal
operatingconditions.
•ByTurbinefastvalving:Oneofthemainreasonfortheinstabilityinthepowersystemis
duetotheexcessenergysuppliedbytheturbineduringthefaultperiod.FastValvinghelps
inreducingthemechanicalinputpowerwhenthegeneratorisunderaccelerationduring
thefaultandhenceimprovesthestabilityofthesystem.
•UseofAutoRe-closing:Majorityofthefaultsinthepowersystemwillbemomentaryand
canbeselfcleared.Hencecircuitbreakersemployedforfaultclearanceopensinsensing
thefaultwithtimedelayof2cyclesandre-closesafterparticulartimetodeterminewhether
the fault is cleared.
•Some oftheotherways toimprove thetransientstabilityareby
employinglightningarresters,highneutralgroundingimpedance,singlepoleswitching,
quickAutomaticVoltageRegulators.

Problems
Tags