ppt power point presentation physics.pdf

mdsaifshiddique123 28 views 40 slides Oct 15, 2024
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

Ppt presentation purpose


Slide Content

1
Lecture 1
Matrices and Determinants
By KisorMukhopadhyay, PrabhuJagatbandhuCollege,
Module I

2
1.1Matrices
1.2Operations of matrices
1.3Types of matrices
1.4Properties of matrices
1.5Determinants
1.6Inverse of a 33 matrix

3237
115
A




1.1 Matrices131
214
476
B






Both Aand Bare examples of matrix. A matrix
is a rectangular array of numbers enclosed by a
pair of bracket.
Why matrix?

4
How about solving7,
35.



 

xy
xy 27,
242,
54101,
365.









 
xyz
xyz
xyz
xyz
Consider the following set of equations:
It is easy to show that x = 3and
y = 4.
Matrices can help…
1.1 Matrices

511 12 1
21 22 2
12







n
n
m m mn
aaa
aaa
A
aa a
In the matrix
▪numbers a
ij are called elements. First subscript
indicates the row; second subscript indicates
the column. The matrix consists of mnelements
▪It is called “the m nmatrix A = [a
ij]” or simply
“the matrix A ” if number of rows and columns
are understood.
1.1 Matrices

6
Square matrices
▪When m =n, i.e.,
▪A is called a “square matrix of order n” or
“n-square matrix”
▪elements a
11, a
22, a
33,…, a
nncalled diagonal
elements.
▪ is called the traceof A.11 12 1
21 22 2
12







n
n
n n nn
aaa
aaa
A
aaa ...
11 22
1
 


n
ii nn
i
aaaa
1.1 Matrices

7
Equal matrices
▪Two matrices A = [a
ij] and B = [b
ij] are said to
be equal (A = B) iff each element of A is equal
to the corresponding element of B, i.e., a
ij = b
ij
for 1 im, 1 jn.
▪iffpronouns “if and only if”
if A = B, it implies a
ij = b
ij for 1 im, 1 jn;
if a
ij = b
ij for 1 im, 1 jn, it implies A = B.
1.1 Matrices

8
Equal matrices
Given that A = B, find a, b, cand d.
1.1 Matrices10
42
A



 ab
B
cd




Example: and
if A = B, then a= 1, b= 0, c= -4and d= 2.

9
Zero matrices
▪Every element of a matrix is zero, it is called
a zero matrix, i.e., 000
000
000






A
1.1 Matrices

10
Sums of matrices
1.2 Operations of matrices
▪If A = [a
ij
]and B = [b
ij
]are m nmatrices,
then A + Bis defined as a matrix C = A + B,
where C= [c
ij
], c
ij
= a
ij
+ b
ij
for 1 im, 1 jn.123
014




A 230
125




B
Example: if and
Evaluate A + Band A –B.122330353
0(1)1245139
  
 
  
  
AB 122330113
0(1)1245111
  
 
  
   
AB

11
Sums of matrices
1.2 Operations of matrices
▪Two matrices of the sameorder are said to
be conformablefor addition or subtraction.
▪Two matrices of differentorders cannot be
added or subtracted, e.g.,
are NOT conformable for addition or
subtraction.237
115


 131
214
476






12
Scalar multiplication
1.2 Operations of matrices
▪Let lbe any scalar andA = [a
ij
]is anm n
matrix. ThenlA = [la
ij
] for 1 im, 1 jn,
i.e., each element inAis multiplied byl.123
014




A
Example: . Evaluate 3A.313233369
3
3031340312
  

  
  
A
▪In particular, l  1, i.e., A = [a
ij
]. It’s called
thenegativeof A. Note: A A = 0is a zero matrix

13
Properties
1.2 Operations of matrices
Matrices A, Band C are conformable,
▪A + B = B + A
▪A + (B +C)= (A+ B)+C
▪l(A+ B) = lA+ lB, where lis a scalar
(commutative law)
(associative law)
Can you prove them?
(distributive law)

14
Let C= A + B, so c
ij
= a
ij
+b
ij
.
Consider lc
ij
= l(a
ij
+b
ij
) = la
ij
+lb
ij
, we have,
lC= lA+ lB.
Since lC = l(A+ B), so l(A+ B) = lA+ lB
Example: Prove l(A+ B) = lA+ lB.
Properties
1.2 Operations of matrices

15
Matrix multiplication
1.2 Operations of matrices
▪If A = [a
ij
]is a m pmatrix and B = [b
ij
]is a
p nmatrix, then ABis defined as a m n
matrix C = AB, where C= [c
ij
] with11 22
1
...

 
p
ij ikkj ij i j ippj
k
cabababab 1 2 3
0 1 4




A 12
23
50






B
Example: , and C = AB.
Evaluate c
21
.12
123
23
014
50

 
 


 21
0(1)124522c
for 1 im, 1 jn.

16
Matrix multiplication
1.2 Operations of matrices1 2 3
0 1 4




A 12
23
50






B
Example: , , Evaluate C = AB.11
12
21
22
1(1)223518
12
1223308123
23
0(1)124522014
50
0213403
c
c
c
c

 
 
 
 


 
 12
123 188
23
014 223
50
CAB

 
 
 
 



17
Matrix multiplication
1.2 Operations of matrices
▪In particular, A is a 1mmatrix and
B is a m 1matrix, i.e., 11 1111 1221 1 1
1
...

 
m
kk mm
k
Cabababab  
11 12 1
...
m
Aaaa 11
21
1






m
b
b
B
b
then C = ABis a scalar.

18
Matrix multiplication
1.2 Operations of matrices
▪BUT BA is a m mmatrix!  
11 1111 1112 111
21 2111 2112 211
11 12 1
1 111 112 11
...
  
  
  

  
  
  
m
m
m
m m m mm
b bababa
b bababa
BAaaa
b bababa
▪So AB BA in general !

19
Properties
1.2 Operations of matrices
Matrices A, Band C are conformable,
▪A(B + C)= AB + AC
▪(A + B)C = AC+ BC
▪A(BC)= (AB) C
▪AB BA in general
▪AB = 0 NOT necessarily imply A = 0 orB = 0
▪AB = ACNOT necessarily imply B = C

20
Properties
Let X = B + C, so x
ij
= b
ij
+c
ij
. Let Y = AX, then11
1 1 1
()
( )
nn
ij ikkj ikkj kj
kk
n n n
ikkj ikkj ikkj ikkj
k k k
yaxabc
abacabac

  
  
  


Example: Prove A(B + C)= AB + ACwhere A, B
andC are n-square matrices
So Y = AB + AC; therefore, A(B + C)= AB + AC
1.2 Operations of matrices

21
1.3 Types of matrices
▪Identity matrix
▪The inverse of a matrix
▪The transpose of a matrix
▪Symmetric matrix
▪Orthogonal matrix

22
▪A square matrix whose elements a
ij= 0,for
i >jis called upper triangular, i.e., 11 12 1
22 2
0
00






n
n
nn
aaa
aa
a
▪A square matrix whose elements a
ij= 0,for
i <jis called lower triangular, i.e., 11
21 22
12
00
0





n n nn
a
aa
aaa
Identity matrix
1.3 Types of matrices

23
▪Both upper and lower triangular, i.e., a
ij= 0,for
i j, i.e., 11
22
00
00
00






 nn
a
a
D
a 1122
diag[,,...,]
nn
Daaa
Identity matrix
1.3 Types of matrices
is called a diagonal matrix, simply

24
▪In particular, a
11= a
22 = … = a
nn = 1, the
matrix is called identity matrix.
▪Properties: AI = IA = A
Examples of identity matrices: and 10
01


 100
010
001





Identity matrix
1.3 Types of matrices

25
▪AB BAin general. However, if two square
matrices Aand Bsuch that AB = BA, then A
and Bare said to be commute.
Can you suggest two matrices that must
commute with a square matrix A?
▪If Aand Bsuch that AB = -BA, then Aand B
are said to be anti-commute.
Special square matrix
1.3 Types of matrices
Ans: Aitself, the identity matrix, ..

26
▪If matrices Aand Bsuch that AB = BA = I,
then Bis called the inverse of A(symbol:A
-1
);
and A is called the inverse of B(symbol:B
-1
).
The inverse of a matrix623
110
101
B






Show Bis the the inverse of matrix A.123
133
124
A






Example:100
010
001
ABBA






Ans: Note that
Can you show the
details?
1.3 Types of matrices

27
The transpose of a matrix
▪The matrix obtained by interchanging the
rows and columns of a matrix Ais called the
transpose of A(write A
T
).
Example:
The transpose of Ais 123
456




A 14
25
36






T
A
▪For a matrix A = [a
ij], its transpose A
T
= [b
ij],
where b
ij= a
ji.
1.3 Types of matrices

28
Symmetric matrix
▪A matrix Asuch that A
T
= A is called symmetric,
i.e., a
ji = a
ijfor all iand j.
▪A+ A
T
must be symmetric. Why?
Example: is symmetric.123
245
356






A
▪A matrix Asuch that A
T
= -A is called skew-
symmetric, i.e., a
ji = -a
ijfor all iand j.
▪A-A
T
must be skew-symmetric. Why?
1.3 Types of matrices

29
Orthogonal matrix
▪A matrix Ais called orthogonal if AA
T
= A
T
A = I,
i.e., A
T
= A
-1
Example: prove that is
orthogonal.1/31/61/2
1/32/60
1/31/61/2
 




A
We’ll see that orthogonal matrix represents a
rotation in fact!
1.3 Types of matrices
Since, . Hence, AA
T
= A
T
A = I.1/31/31/3
1/62/61/6
1/201/2
T
A






Can you show the
details?

30
▪(AB)
-1
= B
-1
A
-1
▪(A
T
)
T
= A and (lA)
T
= l A
T
▪(A + B)
T
= A
T
+ B
T
▪(AB)
T
= B
T
A
T
1.4 Properties of matrix

31
1.4 Properties of matrix
Example: Prove (AB)
-1
= B
-1
A
-1
.
Since (AB)(B
-1
A
-1
)= A(B B
-1
)A
-1
= Iand
(B
-1
A
-1
)(AB)= B
-1
(A
-1
A)B = I.
Therefore, B
-1
A
-1
is the inverse of matrix AB.

32
1.5 Determinants
Consider a 22matrix:11 12
21 22
aa
A
aa




Determinant of order 2
▪Determinant of A, denoted , is a number
and can be evaluated by 11 12
1122 1221
21 22
||
aa
A aaaa
aa
  ||A

3311 12
1122 1221
21 22
||
aa
A aaaa
aa
 
Determinant of order 2
▪easy to remember (for order 2 only)..12
34
Example: Evaluate the determinant:12
14232
34

1.5 Determinants
+-

34
1.5 Determinants
1.If every element of a row (column) is zero,
e.g., , then |A| = 0.
2.|A
T
| = |A|
3.|AB| = |A||B|
determinant of a matrix
=that of its transpose
The following properties are true for
determinants of anyorder.12
10200
00


35
Example: Show that the determinant of any
orthogonal matrix is either +1or –1.
For any orthogonal matrix, A A
T
= I.
Since |AA
T
| = |A||A
T
| = 1and |A
T
| = |A|, so |A|
2
= 1or
|A| = 1.
1.5 Determinants

36
1.5 Determinants
For any 2x2 matrix11 12
21 22
aa
A
aa




Its inverse can be written as 22 121
21 11
1aa
A
aaA






Example: Find the inverse of10
12
A




The determinant of Ais -2
Hence, the inverse of Ais1
10
1/21/2
A





How to find an inverse for a 3x3 matrix?

37
1.5 Determinants of order 3
Consider an example:123
456
789
A






Its determinant can be obtained by: 123
451212
456369
787845
789
A  3366930
You are encouraged to find the determinant
by using other rows or columns

38
1.6 Inverse of a 33 matrix
Cofactor matrix of 123
045
106
A






The cofactor for each element of matrix A:11
45
24
06
A 12
05
5
16
A 13
04
4
10
A 21
23
12
06
A 22
13
3
16
A 23
12
2
10
A 31
23
2
45
A 32
13
5
05
A 33
12
4
04
A

39
Cofactor matrix of is then given
by:1 2 3
0 4 5
1 0 6
A





 2454
1232
254






1.6 Inverse of a 33 matrix

40
1.6 Inverse of a 33 matrix
Inverse matrix of is given by:1 2 3
0 4 5
1 0 6
A





 1
2454 24122
11
1232 535
22
254 424
T
A
A

   
  
  
  
   
   1211611111
522322522
211111211






Tags