PPTLech1_Sequencepdf__2024_07_28_08_41_15.pdf

sd811419 33 views 36 slides Oct 03, 2024
Slide 1
Slide 1 of 36
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36

About This Presentation

Engineering mathematics notes


Slide Content

Engineering Mathematics-I
Subject code: BTAM101-23
Topic: Sequence
Dr. HemantKumar

Sequence
•Asequenceisanorderedsetofnumbers
�
1,�
2,�
3…
•Here,�
1,�
2,�
3…representthetermsofthe
sequence.Itisdenotedby�
����
�.
•Ifthenumberoftermsisinfinitethenthesequence
issaidtobeinfinitesequenceotherwiseafinite
sequence.
•e.g.,thesetofnumbers2,4,6,8,…isinfinite
sequence,andisrepresentedas2���2�.Here,
�
�=2�isthenthtermofthegeneralterm.

•Definition:Asequenceofnumbersisafunction
whosedomainisasetofnaturalnumbers.
�
�:ℕ→ℝ,Here,ℝisthesetofrealnumbers.
Examples:
(i)�
�=(−1)
�
=−1,1,−1,1,…isinfinite
sequence.
(ii)�
�=
�−1
�
=0,
1
2
,
2
3
,…isaninfinitesequence.
(iii)�
�=
1
�
=1,
1
2
,
1
3
,…isaninfinitesequence.

Types of sequences
•Convergentsequence:Aconvergentsequenceis
onewhoselimitexists.
i.e.,lim
�→∞
�
�=�(finiteandunique)
•Divergentsequence:Adivergentsequenceisone
whoselimitdoesnotexistor+∞or∞.
i.e.,lim
�→∞
�
�=+∞orlim
�→∞
�
�=−∞
•Oscillatingsequence:Asequencewhichisneither
convergentnordivergent,iscalledoscillating
sequence.
•E.g.,�
�=(−1)
�
=−1,1,−1,1,…

•lim
�→∞
(−1)
�
=ቊ
−1??????��??????����
1??????��??????�����
The above sequence is called oscillatory finite
sequence.
•lim
�→∞
�(−1)
�
=ቊ
−∞??????��??????����
∞??????��??????�����
The above sequence is called oscillatory infinite
sequence.

Convergent of a sequence
•Definition:Thesequence�
�ofnumbersissaid
tobeconvergenttoanumber�ifforevery∈>0,
∃apositiveintegermsuchthat
�
&#3627408475;−&#3627408473;<∈⩝&#3627408475;≥&#3627408474;.
Itiswrittenaslim
&#3627408475;→∞
&#3627408462;
&#3627408475;=&#3627408473;
•Ifthelimitofasequence&#3627408462;
&#3627408475;existsthenthe
sequenceisconvergent.
•Asequence&#3627408462;
&#3627408475;convergestoanumber&#3627408473;thenwe
canwritelim
&#3627408475;→∞
&#3627408462;
&#3627408475;=&#3627408473;or&#3627408462;
&#3627408475;→&#3627408473;.Ifnosuch&#3627408473;
exist,thenwesaythatlimitofsequencedoesnot
existoritisnotconvergent.
•Limitofasequenceitifexiststhenitisunique.

•Iflim
&#3627408475;→∞
&#3627408462;
&#3627408475;=&#3627408473;,&#3627408473;isfiniteanduniquethensequence
&#3627408462;
&#3627408475;convergesto&#3627408473;,otherwisenot.
•Example:(i)Take&#3627408462;
&#3627408475;=
1
&#3627408475;
thenlim
&#3627408475;→∞
1
&#3627408475;
=0whichis
finiteandunique.Thus,&#3627408462;
&#3627408475;isconvergentand
&#3627408462;
&#3627408475;→0.
(ii)Take&#3627408462;
&#3627408475;=
&#3627408475;
2
+1
&#3627408475;
thenlim
&#3627408475;→∞
&#3627408475;
2
+1
&#3627408475;
→∞
whichisnotfinite.Thus,&#3627408462;
&#3627408475;isnotconvergent.
(iii)&#3627408462;
&#3627408475;=(−1)
&#3627408475;
then
lim
&#3627408475;→∞
(−1)
&#3627408475;
=ቊ
1??????&#3627408467;&#3627408475;??????&#3627408480;&#3627408466;&#3627408483;&#3627408466;&#3627408475;
−1??????&#3627408467;&#3627408475;??????&#3627408480;&#3627408476;&#3627408465;&#3627408465;
whichisfinitebutnotunique.Thus,&#3627408462;
&#3627408475;isnot
convergent.

Exercise: Check the convergence of the
sequence &#3627408462;
&#3627408475;where &#3627408462;
&#3627408475;is
(i)
2
??????
−1
3
??????
(ii)
2&#3627408475;+1
1−3&#3627408475;
(iii)
2&#3627408475;
&#3627408475;+1
(iv) (−1)
&#3627408475;+1
2&#3627408475;+3
2&#3627408475;+1

Sol.
(i)Take &#3627408462;
&#3627408475;=
2
??????
−1
3
??????
lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=lim
&#3627408475;→∞
2
&#3627408475;
−1
3
&#3627408475;
=lim
&#3627408475;→∞
2
3
&#3627408475;

1
3
&#3627408475;
=0−0=0
Which is unique & finite. Hence, &#3627408462;
&#3627408475;→0is
convergent sequence.
(ii) lim
&#3627408475;→∞
&#3627408462;
&#3627408475;= lim
&#3627408475;→∞
2&#3627408475;+1
1−3&#3627408475;
=lim
&#3627408475;→∞
2+1/&#3627408475;
1/&#3627408475;−3/&#3627408475;
=
2+0
0−0
→∞
which is not finite. Hence, &#3627408462;
&#3627408475;is not convergent
i.e., divergent.

(iii) lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=lim
&#3627408475;→∞
2&#3627408475;
&#3627408475;+1
=lim
&#3627408475;→∞
2
1+1/&#3627408475;
=2
Which is unique and finite. Hence, &#3627408462;
&#3627408475;→2is
convergent sequence.
(iv) lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=lim
&#3627408475;→∞
(−1)
&#3627408475;+1
2&#3627408475;+3
2&#3627408475;+1
=
lim
&#3627408475;→∞
(−1)
&#3627408475;+1
2+3/&#3627408475;
2+1/&#3627408475;
=
=ቊ
1??????&#3627408467;&#3627408475;??????&#3627408480;&#3627408466;&#3627408483;&#3627408466;&#3627408475;
−1??????&#3627408467;&#3627408475;??????&#3627408480;&#3627408476;&#3627408465;&#3627408465;
Since limit is finite but not unique. Hence, &#3627408462;
&#3627408475;is
not convergent.

(i)
ln&#3627408475;
ln2&#3627408475;
(ii)
3
??????
&#3627408475;
3
(iii)
(−1)
??????+1
2&#3627408475;+1
(iv)
sin&#3627408475;
&#3627408475;
Exercise: Check the convergence of the
sequence &#3627408462;
&#3627408475;where &#3627408462;
&#3627408475;is

Sol.
(i)&#3627408462;
&#3627408475;=
ln&#3627408475;
ln2&#3627408475;
⇒ lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=lim
&#3627408475;→∞
ln&#3627408475;
ln2&#3627408475;
=lim
&#3627408475;→∞
1/&#3627408475;
1
2??????
×2
=1(Using
L’Hospitalrule)
Whichisfiniteandunique.Hence,&#3627408462;
&#3627408475;→1isconvergentsequence.
(ii)lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=lim
&#3627408475;→∞
3
??????
&#3627408475;
3
=lim
&#3627408475;→∞
3
??????
ln3
3&#3627408475;
2
=lim
&#3627408475;→∞
3
??????
ln3
2
6&#3627408475;
=
lim
&#3627408475;→∞
3
??????
ln3
3
6
→∞notfinite(UsingL’Hospitalrule)
(iii)lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=lim
&#3627408475;→∞
(−1)
??????+1
2&#3627408475;+1
→0whichisfiniteandunique.
Hence,&#3627408462;
&#3627408475;→0isconvergentsequence.
(iv)lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=lim
&#3627408475;→∞
sin&#3627408475;
&#3627408475;
=lim
&#3627408475;→∞
&#3627408475;&#3627408476;.??????&#3627408486;??????&#3627408475;??????&#3627408463;????????????&#3627408484;????????????&#3627408475;−1??????&#3627408476;1
&#3627408475;
→0
whichisuniqueandfinite.
Hence,&#3627408462;
&#3627408475;→0isconvergentsequence.

Sandwich Theorem For Sequences
•If &#3627408462;
&#3627408475;, &#3627408463;
&#3627408475;, &#3627408464;
&#3627408475;are sequences of real numbers
such that &#3627408462;
&#3627408475;≤&#3627408463;
&#3627408475;≤&#3627408464;
&#3627408475;⩝&#3627408475;and lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=
&#3627408473;;lim
&#3627408475;→∞
&#3627408464;
&#3627408475;=&#3627408473;then lim
&#3627408475;→∞
&#3627408463;
&#3627408475;=&#3627408473;.
•Examples:
(i) &#3627408462;
&#3627408475;=
(−1)
??????+1
2&#3627408475;+1
(ii) &#3627408462;
&#3627408475;=
−1
??????+1
(2&#3627408475;+3)
2&#3627408475;+1
(iii) &#3627408462;
&#3627408475;=
sin&#3627408475;
&#3627408475;

Sol.
(i)For &#3627408462;
&#3627408475;=
(−1)
??????+1
2&#3627408475;+1
−1
2&#3627408475;+1
≤&#3627408462;
&#3627408475;≤
1
2&#3627408475;+1
⇒−lim
&#3627408475;→∞
1
2&#3627408475;+1
≤lim
&#3627408475;→∞
&#3627408462;
&#3627408475;≤lim
&#3627408475;→∞
1
2&#3627408475;+1
⇒0≤lim
&#3627408475;→∞
&#3627408462;
&#3627408475;≤0
⇒lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=0which is finite and unique and
hence,&#3627408462;
&#3627408475;→0is convergent sequence.

(ii)For&#3627408462;
&#3627408475;=
−1
??????+1
(2&#3627408475;+3)
2&#3627408475;+1
−(2&#3627408475;+3)
2&#3627408475;+1
≤&#3627408462;
&#3627408475;≤
(2&#3627408475;+3)
2&#3627408475;+1
⇒−lim
&#3627408475;→∞
2&#3627408475;+3
2&#3627408475;+1
≤≤lim
&#3627408475;→∞
2&#3627408475;+3
2&#3627408475;+1
⇒−lim
&#3627408475;→∞
2+3/&#3627408475;
2+1/&#3627408475;
≤lim
&#3627408475;→∞
&#3627408462;
&#3627408475;≤lim
&#3627408475;→∞
2+3/&#3627408475;
2+1/&#3627408475;
⇒−1≤lim
&#3627408475;→∞
&#3627408462;
&#3627408475;≤lim
&#3627408475;→∞
1
⇒lim
&#3627408475;→∞
&#3627408462;
&#3627408475;isnotunique.Notconvergent.

Standard Results: Commonly used limits
•lim
&#3627408475;→∞
ln&#3627408475;
&#3627408475;
=0;
•lim
&#3627408475;→∞
&#3627408475;
1/&#3627408475;
=1;
•lim
&#3627408475;→∞
??????
&#3627408475;
=0;??????<1;
•lim
&#3627408475;→∞
(1+??????/&#3627408475;)
&#3627408475;
=&#3627408466;
&#3627408485;
; ⩝??????;
•lim
&#3627408475;→∞
&#3627408485;
??????
&#3627408475;!
=0;⩝??????

Exercise: Check the convergence of the
sequence&#3627408462;
&#3627408475;where &#3627408462;
&#3627408475;is
•(i)
&#3627408475;+1
&#3627408475;−1
&#3627408475;
•(ii)
ln&#3627408475;
&#3627408475;
1/??????
•(iii)
&#3627408475;!
&#3627408475;
??????
•(iv) 1−
1
&#3627408475;
2
&#3627408475;
•(v)
4&#3627408475;+1
4&#3627408475;−1
&#3627408475;

Monotonic sequence
•Asequence&#3627408462;
&#3627408475;issaidtobemonotonicifitis
eitherincreasingordecreasing.
•Asequence&#3627408462;
&#3627408475;issaidtobemonotonically
increasingif&#3627408462;
&#3627408475;≤&#3627408462;
&#3627408475;+1⩝&#3627408475;∈ℕ
•Asequence&#3627408462;
&#3627408475;issaidtobemonotonically
decreasingif&#3627408462;
&#3627408475;≥&#3627408462;
&#3627408475;+1⩝&#3627408475;
•Theappropriateruletocheckwhether
sequenceisincreasingordecreasing,wemust
check&#3627408462;
&#3627408475;+1−&#3627408462;
&#3627408475;≥0or&#3627408462;
&#3627408475;+1−&#3627408462;
&#3627408475;≤0⩝&#3627408475;

Exercise: Check whether the sequence
is monotonic
(i) &#3627408462;
&#3627408475;=
&#3627408475;
&#3627408475;+1
&#3627408462;
&#3627408475;+1−&#3627408462;
&#3627408475;=
&#3627408475;+1
&#3627408475;+2

&#3627408475;
&#3627408475;+1
=
&#3627408475;+1
2
−&#3627408475;&#3627408475;+2
&#3627408475;+2&#3627408475;+1
=
1
&#3627408475;+2&#3627408475;+1
≥0
Hence, &#3627408462;
&#3627408475;is monotonically increasing
sequence.

(ii)
3&#3627408475;+1
5&#3627408475;+7
(iii) 1+
1
2
+
1
2
2
+⋯+
1
2
??????
(iv)
−1
3&#3627408475;+5
(v) &#3627408462;
&#3627408475;=1+
1
2
+
1
3
+⋯+
1
&#3627408475;
+
1
&#3627408475;+1
−log&#3627408475;

Bounded Sequence
•Asequence&#3627408462;
&#3627408475;issaidtobeboundedabove
if∃arealnumber&#3627408472;suchthat&#3627408462;
&#3627408475;≤&#3627408472;∀&#3627408475;∈ℕ
•Asequence&#3627408462;
&#3627408475;issaidtobeboundedabove
if∃arealnumberℎsuchthatℎ≤&#3627408462;
&#3627408475;∀&#3627408475;∈ℕ
•Asequence&#3627408462;
&#3627408475;iscalledboundedsequenceitis
boundedbelowandboundedabove
i.e.,∃tworealnumbersℎand&#3627408472;suchthat
ℎ≤&#3627408462;
&#3627408475;≤&#3627408472;∀&#3627408475;∈ℕ
•Here,ℎiscalledalowerboundand&#3627408472;iscalled
upperboundofthesequence.

Examples
Example -1: &#3627408475;is bounded below but not bounded above.
Therefore, it is unbounded sequence.
Example-2: −&#3627408475;is bounded above but not bounded below.
Therefore, it is unbounded sequence.
Example-3:
1
&#3627408475;
is bounded sequence as 0≤
1
&#3627408475;
≤1⩝&#3627408475;∈ℕ
Example-4:
(−1)
??????
&#3627408475;
is bounded sequence as −1≤
(−1)
??????
&#3627408475;
≤1
Example-5: &#3627408475;(−1)
&#3627408475;
is an unbounded sequence.

Importantpointsaboutabounded
sequence
•Boundedsequenceisalwayswrittenas
I&#3627408475;&#3627408467;??????&#3627408474;&#3627408482;&#3627408474;&#3627408462;
&#3627408475;≤&#3627408462;
&#3627408475;≤??????&#3627408482;&#3627408477;&#3627408479;&#3627408466;&#3627408474;&#3627408482;&#3627408474;&#3627408462;
&#3627408475;∀&#3627408475;∈ℕ
Infimum= greatest lower bound
Supremum= least upper bound
•Everyconvergentsequenceisboundedbut
converseneednotbetrue.
•Divergentsequenceisunboundedsequence.
•Finitelyoscillatorysequenceisboundedwhile
Infinitelyoscillatorysequenceisunbounded.

•Monotonicallyincreasingandboundedabove
sequenceisconvergent.
•Monotonicallydecreasingandboundedbelow
sequenceisconvergent.
•Convergentlimitofmonotonicallyincreasing
andboundedabovesequenceissupremumof
thesequence.
•Convergentlimitofmonotonicallydecreasing
andboundedbelowsequenceisinfimumof
thesequence.

Some important results
•Result-1.
If lim
&#3627408475;→∞
&#3627408462;??????+1
&#3627408462;??????
=&#3627408473;,where &#3627408473;<1,then lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=0
•Result-2.
If lim
&#3627408475;→∞
&#3627408462;??????+1
&#3627408462;??????
=&#3627408473;,where&#3627408473;>1,then lim
&#3627408475;→∞
&#3627408462;
&#3627408475;=+∞
•Result-3.
•For sequence {&#3627408462;
&#3627408475;
} :
(i) diverges to +∞if &#3627408462;>1
(ii) converges if −1<&#3627408462;≤1
(iii) oscillates finitely if &#3627408462;=−1
(iv) oscillates infinitely if &#3627408462;<−1

•Cauchy’s First Theorem on Limits
If &#3627408462;
&#3627408475;→&#3627408473;, then ??????
&#3627408475;=
&#3627408462;
1+&#3627408462;
2+&#3627408462;
3+⋯+&#3627408462;
??????
&#3627408475;
→&#3627408473;as &#3627408475;→

•Cauchy’s Second Theorem on Limits
If &#3627408462;
&#3627408475;>0and
&#3627408462;??????+1
&#3627408462;??????
→&#3627408473;, then prove that
??????
&#3627408462;
&#3627408475;→&#3627408473;

Important questions
1.Prove that the sequence {&#3627408462;
&#3627408475;}, where
&#3627408462;
&#3627408475;=
1
&#3627408475;+1
+
1
&#3627408475;+2
+
1
&#3627408475;+3
…+
1
2&#3627408475;
is convergent.
Ans. Here, &#3627408462;
&#3627408475;=
1
&#3627408475;+1
+
1
&#3627408475;+2
+
1
&#3627408475;+3
+⋯+
1
2&#3627408475;
∴&#3627408462;
&#3627408475;+1=
1
&#3627408475;+2
+
1
&#3627408475;+3
+
1
&#3627408475;+4
+⋯+
1
2&#3627408475;
+
1
2&#3627408475;+1
+
1
2&#3627408475;+2
∴&#3627408462;
&#3627408475;+1−&#3627408462;
&#3627408475;=
1
2&#3627408475;+1
+
1
2&#3627408475;+2

1
&#3627408475;+1
=
1
2&#3627408475;+1
+
1
2(&#3627408475;+1)

1
&#3627408475;+1
=
1
2&#3627408475;+1

1
2&#3627408475;+2
=
2&#3627408475;+2−2&#3627408475;−1
2&#3627408475;+12&#3627408475;+2
=
1
2&#3627408475;+12&#3627408475;+2
>0⩝&#3627408475;∈ℕ
∴&#3627408462;
&#3627408475;+1−&#3627408462;
&#3627408475;>0⩝&#3627408475;∈ℕ
⇒{&#3627408462;
&#3627408475;}is monotonically increasing
Also &#3627408462;
&#3627408475;=
1
&#3627408475;+1
+
1
&#3627408475;+2
+
1
&#3627408475;+3
…+
1
&#3627408475;+&#3627408475;
<
1
&#3627408475;
+
1
&#3627408475;
+
1
&#3627408475;
…+
1
&#3627408475;
=
&#3627408475;
&#3627408475;
=1⩝&#3627408475;∈ℕ
∴&#3627408462;
&#3627408475;<1⩝&#3627408475;∈ℕ⇒{&#3627408462;
&#3627408475;}is bounded above
∴{&#3627408462;
&#3627408475;}is convergent.

2. Prove that the sequence
2&#3627408475;−7
3&#3627408475;+2
is bounded.
Ans. &#3627408462;
&#3627408475;=
2&#3627408475;−7
3&#3627408475;+2
>0⩝&#3627408475;≥4
Also, &#3627408462;
1=
−5
5
=−1, &#3627408462;
2=
−3
8
, &#3627408462;
3=
−1
11
∴&#3627408462;
&#3627408475;≥−1⩝&#3627408475;
∴{&#3627408462;
&#3627408475;}is bounded below.
Again, &#3627408462;
&#3627408475;=
2
3

25
3
3&#3627408475;+2
<2/3⩝&#3627408475;(divide 2n-7 by
3n+2)
∴{&#3627408462;
&#3627408475;}is bounded above.
∴{&#3627408462;
&#3627408475;}is bounded.

3. If &#3627408462;
&#3627408475;=1+
1
2
+
1
3
+⋯+
1
&#3627408475;
−log&#3627408475;,
then prove that &#3627408462;
&#3627408475;is monotonically decreasing sequence. Prove that
it is convergent.
Ans. Here, &#3627408462;
&#3627408475;=1+
1
2
+
1
3
+⋯+
1
&#3627408475;
−log&#3627408475;
∴&#3627408462;
&#3627408475;+1=1+
1
2
+
1
3
+⋯+
1
&#3627408475;
+
1
&#3627408475;+1
−log(&#3627408475;+1)
∴&#3627408462;
&#3627408475;+1−&#3627408462;
&#3627408475;=
1
&#3627408475;+1
−log(&#3627408475;+1)+log&#3627408475;=
1
&#3627408475;+1
−log
&#3627408475;+1
&#3627408475;
=
1
&#3627408475;+1
−log1+
1
&#3627408475;
=
1
&#3627408475;+1

1
&#3627408475;

1
2&#3627408475;
2
+
1
3&#3627408475;
3

1
4&#3627408475;
4
+⋯∵log1+??????=??????−
&#3627408485;
2
2
+
&#3627408485;
3
3

&#3627408485;
4
4
+⋯
=
1
&#3627408475;+1

1
&#3627408475;
+
1
2&#3627408475;
2

1
3&#3627408475;
3

1
4&#3627408475;
4
+⋯<
1
&#3627408475;+1

1
&#3627408475;
+
1
2&#3627408475;
2

1
3&#3627408475;
3

1
4&#3627408475;
4
>0
=
2&#3627408475;
2
−2&#3627408475;&#3627408475;+1+&#3627408475;+1
2&#3627408475;
2
(&#3627408475;+1)
=−
&#3627408475;−1
2&#3627408475;
2
(&#3627408475;+1)
≤0⩝&#3627408475;∈ℕ
∴&#3627408462;
&#3627408475;+1−&#3627408462;
&#3627408475;<0⩝&#3627408475;∈ℕ
⇒&#3627408462;
&#3627408475;+1<&#3627408462;
&#3627408475;⩝&#3627408475;∈ℕ
∴&#3627408462;
&#3627408475;is monotonically decreasing. Also &#3627408462;
&#3627408475;> 0, ∴&#3627408462;
&#3627408475;is bounded below.
∴&#3627408462;
&#3627408475;is convergent sequence. Proved.

4. Prove that the sequence 1+
1
&#3627408475;
&#3627408475;
is bounded.
Ans. &#3627408462;
&#3627408475;=1+
1
&#3627408475;
&#3627408475;
, clearly &#3627408462;
&#3627408475;>0⩝&#3627408475;∈ℕ
=1+&#3627408475;
1
&#3627408475;
+
&#3627408475;(&#3627408475;−1)
2!
1
&#3627408475;
2
+
&#3627408475;(&#3627408475;−1)(&#3627408475;−2)
3!
1
&#3627408475;
3
+⋯
=1+1+
(1−1/&#3627408475;)
2!
+
(1−1/&#3627408475;)(1−2/&#3627408475;)
3!
+⋯
<1+
1
1!
+
1
2!
+
1
3!
+⋯<&#3627408466;⩝&#3627408475;∈ℕ
[Since (1-1/n) <1, 1−
2
&#3627408475;
<1]
i.e., &#3627408462;
&#3627408475;<&#3627408466;⩝&#3627408475;∈ℕ
∴0< &#3627408462;
&#3627408475;<&#3627408466;⩝&#3627408475;∈ℕ. Thus, {&#3627408462;
&#3627408475;} is bounded.

5. Prove that lim
&#3627408475;→∞
1
&#3627408475;
1+
1
2
+
1
3
+⋯+
1
&#3627408475;
=0
Sol. Let &#3627408462;
&#3627408475;=
1
&#3627408475;
.Then lim
&#3627408475;→∞
1
&#3627408475;
=0
By Cauchy’s first limit theorem on limits, we have
lim
&#3627408475;→∞
&#3627408462;
1+&#3627408462;
2+&#3627408462;
3+⋯+&#3627408462;
&#3627408475;
&#3627408475;
=0
⇒lim
&#3627408475;→∞
1
&#3627408475;
1+
1
2
+
1
3
+⋯+
1
&#3627408475;
=0. Proved

6. Prove thatlim
&#3627408475;→∞
2
1
1
3
2
2
4
3
3

&#3627408475;+1
&#3627408475;
&#3627408475;
1
??????
=&#3627408466;
Sol. Let &#3627408462;
&#3627408475;=
2
1
1
3
2
2
4
3
3

&#3627408475;+1
&#3627408475;
&#3627408475;
&#3627408462;
&#3627408475;+1=
2
1
1
3
2
2
4
3
3

&#3627408475;+1
&#3627408475;
&#3627408475;
&#3627408475;+2
&#3627408475;+1
&#3627408475;+1

&#3627408462;
??????+1
&#3627408462;
??????
=
&#3627408475;+2
&#3627408475;+1
&#3627408475;+1
=1+
1
&#3627408475;+1
&#3627408475;+1
⇒lim
&#3627408475;→∞
&#3627408462;
??????+1
&#3627408462;
??????
=lim
&#3627408475;→∞
1+
1
&#3627408475;+1
&#3627408475;+1
=&#3627408466;
Now, &#3627408462;
&#3627408475;>0⩝&#3627408475;∈ℕ
∴by Cauchy’s second theorem on limits, we have
lim
&#3627408475;→∞
&#3627408462;
&#3627408475;
1/&#3627408475;
=&#3627408466;or
lim
&#3627408475;→∞
2
1
1
3
2
2
4
3
3

&#3627408475;+1
&#3627408475;
&#3627408475;
1
??????
=&#3627408466;. Proved.

Do yourself.
1. Prove that the sequence
3&#3627408475;−1
4&#3627408475;+5
is
(i) Monotonically increasing
(ii) Bounded
(iii) Convergent
2. Prove that the sequence {&#3627408462;
&#3627408475;}, where
&#3627408462;
&#3627408475;=1+
1
2
+
1
2
2
+⋯+
1
2
??????−1
convergent.
3. Prove that the sequence
&#3627408475;
2
+1
2&#3627408475;+3
is unbounded.

4. Show that lim
&#3627408475;→∞
1
&#3627408475;
2
1
+
3
2
+
4
3
+⋯+
&#3627408475;+1
&#3627408475;
=1
5. Show that lim
&#3627408475;→∞
&#3627408475;+1&#3627408475;+2…(&#3627408475;+&#3627408475;)
&#3627408475;
??????
1
??????
=
4
??????
6. Prove that
1
&#3627408475;
2
+
1
(&#3627408475;+1)
2
+
1
(&#3627408475;+2)
2
+⋯+
1
(2&#3627408475;)
2
is bounded sequence.
7. Show that the sequence
&#3627408475;+1
&#3627408475;
converges to 1.

ProgramacodeinPythontoidentify
whetherthegivensequenceis
convergentornot.
PROJECT