Present ppde casquetes esfericos para volumenes de revolucion

CarlosTorresMatos 4,898 views 55 slides Jul 28, 2016
Slide 1
Slide 1 of 55
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55

About This Presentation

Conjunto de casos de volumenes de revolucion muy tipicos en las aplicaciones del calculo integral.


Slide Content

El método de los
casquetes
cilíndricos
por Aquiles Páramo Fonseca
Departamento de Matemáticas- Universidad de Los Andes
Bogotá – Colombia - Junio del 2004
TEMAS DE CÁLCULO INTEGRAL

Temas
Introducción
Planteamiento general
Ejemplo 1
Ejemplo 2
Ejemplo 3
Ejemplo final

Introducción
Cebollas y troncos de
madera

¿Qué es el método de los casquetes cilíndricos?
Es un método de cálculo integral que permite
evaluar volúmenes de sólidos de revolución.
En ciertas situaciones es el único método viable.
El método de las secciones transversales no
siempre es fácil de aplicar y a veces no puede
aplicarse en absoluto.

Por ejemplo…
Hallar el volumen del sólido de revolución que se genera
al hacer girar sobre el eje y la región comprendida, en el
primer cuadrante, entre la curva y = −x
3
+ 4x
2
− 3x + 1 y
la vertical x = 3.

El método de las secciones transversales
Para calcular el volumen
se podría pensar en
utilizar el método de las
secciones transversales.
En este caso serían
secciones horizontales.

Pero…
Las secciones transversales
son, en unas zonas del
sólido, discos completos y,
en otras, arandelas, es decir,
discos con hueco.
Además es necesario
expresar tanto el radio de
los discos como el radio
interior y exterior de las
arandelas en función de la
variable y, lo que no es fácil
de lograr en este caso.
y = −x
3
+ 4x
2
− 3x + 1
x = ?

En cambio…
El método de los casquetes
cilíndricos funciona muy
bien en este caso.
Consiste en dividir el sólido
de revolución en una serie
de casquetes cilíndricos que
se incrustan los unos dentro
de los otros y en integrar
luego los volúmenes de
estos casquetes para obtener
el volumen total.

Cebollas y troncos de madera
Es importante entender bien la estructura geométrica
involucrada en el método de los casquetes cilíndricos.

Cebollas y troncos de madera

Cebollas y troncos de madera

Otros nombres del método
de las “capas” cilíndricas.
de los “cascarones” cilíndricos.
de las “cáscaras” cilíndricas
de las “envolturas” o “envolventes” cilíndricas.
En inglés: “cylindrical shells”

Planteamiento general
El método de los
casquetes cilíndricos

Antes que nada…
El volumen de un
casquete cilíndrico se
calcula restando el
volumen del cilindro
interior al volumen del
cilindro exterior:
2 1
2 2
2 1
V V V
r h r hp p
= -
= -

Así que…
2 1
2 2
2 1
2 2
2 1
2 1 2 1
2 1
2 1
( )
( )( )
2 ( )
2
2
V V V
r h r h
r r h
r r r r h
r r
r r h
rh r
p p
p
p
p
p
= -
= -
= -
= + -
+æ ö
= -
ç ¸
è ø
= D

El volumen de un casquete cilíndrico
2V rh rp= D
V = (circunferencia)(altura)(grosor)

El volumen de un casquete cilíndrico
2V rh rp= D
V = (circunferencia)(altura)(grosor)

El problema general
Hallar el volumen del sólido de revolución que se genera
al hacer girar alrededor del eje y la región que está
comprendida entre la curva y = f(x), con f(x) > 0, el eje x
y las rectas verticales x = a y x = b, donde 0 < a < b.

El problema general
Hallar el volumen del sólido de revolución que se genera
al hacer girar alrededor del eje y la región que está
comprendida entre la curva y = f(x), con f(x) > 0, el eje x
y las rectas verticales x = a y x = b, donde 0 < a < b.

El problema general
Hallar el volumen del sólido de revolución que se genera
al hacer girar alrededor del eje y la región que está
comprendida entre la curva y = f(x), con f(x) > 0, el eje x
y las rectas verticales x = a y x = b, donde 0 < a < b.

El método de los casquetes cilíndricos
Dividimos el intervalo [a, b]
en n subintervalos todos del
mismo ancho.
Sea x
i
* el punto medio del
subintervalo i-ésimo.
Consideramos el rectángulo
R
i
construido sobre el
subintervalo i-ésimo con
una altura de f (x
i
*).
Lo hacemos girar en torno
del eje y.

El método de los casquetes cilíndricos
Se produce un casquete
cilíndrico que tiene como
volumen:
(2 *) ( *)
i i i
V x f x xp= D

El método de los casquetes cilíndricos
Se ponen n casquetes
cilíndricos de éstos, los
unos dentro de los otros.
Se suman todos sus
volúmenes:
1 1
(2 *) ( *)
n n
i i i
i i
V V x f x xp
= =
» = Då å

El método de los casquetes cilíndricos
La aproximación al
volumen del sólido será
mejor entre más grande
sea n, el número de
casquetes cilíndricos.
Se puede mostrar que:
1
lim (2 *) ( *) 2 ( )
n
b
i i
n
a
i
V x f x x xf x dxp p
®¥
=
= D =å ò

Regla general
El volumen del sólido de revolución que se genera al
hacer girar alrededor del eje y la región que está
comprendida entre la curva y = f(x), con f(x) > 0, el eje
x y las rectas verticales x = a y x = b, donde 0 < a < b,
está dado por la integral:
2 ( )
b
a
V xf x dxp=
ò

Ejemplo 1
El problema del
comienzo

Recordando…
Hallar el volumen del sólido de revolución que se genera
al hacer girar sobre el eje y la región comprendida, en el
primer cuadrante, entre la curva y = −x
3
+ 4x
2
− 3x + 1 y
la vertical x = 3.

Recordando…
Hallar el volumen del sólido de revolución que se genera
al hacer girar sobre el eje y la región comprendida, en el
primer cuadrante, entre la curva y = −x
3
+ 4x
2
− 3x + 1 y
la vertical x = 3.

El método de los casquetes cilíndricos
Dividimos el sólido de
revolución en una serie
de casquetes cilíndricos
que se incrustan los unos
dentro de los otros.

El método de los casquetes cilíndricos
La altura de los casquetes
cilíndricos varía de
acuerdo a la función:
f(x) = −x
3
+ 4x
2
− 3x + 1

La integral para el volumen es:

3
0
3
3 2
0
3
4 3 2
0
3
5 2
4 3
0
2 ( )
2 ( 4 3 1)
2 ( 4 3 )
99
2
5 2 5
x f x dx
x x x x dx
x x x x dx
x x
x x
p
p
p
p p
=
= - + - +
= - + - +
é ù
= - + - + =
ê ú
ë û
ò
ò
ò

Ejemplo 2
El volumen de un cono

El problema del cono
Demostrar, empleando el
método de los casquetes
cilíndricos, que el volumen
de un cono de altura h y
con radio r en su abertura
está dado por:
21
.
3
V r hp=

Generando el cono
El cono puede ser visto como el sólido que se produce al
hacer girar, alrededor del eje y, la región triangular cuyos
vértices son (0,0), (r,0) y (0,h), donde h y r son números
reales positivos.

Generando el cono
La ecuación de la recta que pasa por los puntos (r,0)
y (0,h) es y = ( −h/r ) x + h, puesto que su pendiente
es m = − h/r y su intercepto con el eje y es el punto
(0,h).

El método de los casquetes cilíndricos
Construimos el cono
mediante una serie de
casquetes cilíndricos,
incrustados los unos
dentro de los otros.
Los radios varían de 0 a r
y las alturas de 0 a h.
r
h

El método de los casquetes cilíndricos
Los casquetes cercanos al
centro son altos y su
radio es pequeño,
mientras que los que se
sitúan más al exterior
tienen un radio amplio
pero su altura es pequeña.

El método de los casquetes cilíndricos
La altura de los casquetes
cilíndricos está dada por
la recta
y = ( −h/r ) x + h.

La integral para el volumen es:

( )
0
0
2 3
2
0
0
2 3
2 2
(2 ) ( )
2 ( )
1
2 2
2 3
1 1
2 2
2 3 6 3
r
r
r
r
V x f x dx
x h r x h dx
x x
h x x dx h
r r
r r
h r h r h
r
p
p
p p
p p p
=
= - +
é ùæ ö
= - = -
ç ¸ ê ú
è ø ë û
æ ö æ ö
= - = =
ç ¸ç ¸
è øè ø
ò
ò
ò

Ejemplo 3
Una región delimitada por
dos curvas

Una región delimitada por dos curvas
Hallar el volumen del sólido de
revolución que se genera al hacer
girar, alrededor del eje y, la
región que está delimitada por la
parábola y = − x
2
+ 4x − 3, por la
cúbica y = x
3
− 6x
2
+ 12x − 5 y
por las verticales x = 1 y x = 3.

El sólido de revolución

Dos funciones involucradas
En este caso, a diferencia de
los ejemplos anteriores, hay
dos funciones involucradas
que son:
3 2
2
( ) 6 12 5
( ) 4 3
g x x x x
f x x x
= - + -
=- + -

El método de los casquetes cilíndricos
Consideremos que este
sólido está formado por
una serie de casquetes
cilíndricos incrustados
los unos dentro de los
otros.

Esta vez, los casquetes no sólo
varían en cuanto a su radio y a
su altura, sino que varían
además en cuanto a su
ubicación respecto del eje x:
Arriba: y = x
3
− 6x
2
+ 12x − 5
Abajo: y = − x
2
+ 4x − 3
La altura de un casquete cilíndrico

La altura de un casquete cilíndrico
En este caso, un casquete
cilíndrico de radio x tiene
como altura:
3 2 2
3 2
( ) ( )
( 6 12 5) ( 4 3)
5 8 2.
g x f x
x x x x x
x x x
-
= - + - - - + -
= - + -

La integral para el volumen es:
( ) ( )
( )
3 3
3 2
1 1
3
5 4 33
4 3 2 2
1
1
3
5 4 3 2
1
2 ( ) ( ) 2 5 8 2
5 8
2 5 8 2 2
5 4 3
292
12 75 160 60 .
30 15
x g x f x dx x x x x dx
x x x
x x x x dx x
x x x x
p p
p p
p
p
- = - + -
é ù
= - + - = - + -
ê ú
ë û
é ù= - + - =
ë û
ò ò
ò

Ejemplo final
La región gira alrededor de
una vertical distinta al eje y

El problema
Hallar el volumen del sólido de revolución que se produce
al hacer girar alrededor de la recta vertical x = 1, la región
que está comprendida entre el eje x, la curva y = f (x) y las
rectas verticales x = 2, x = 3, donde
2
( ) 2 2 .f x x x= - -

El sólido de revolución
2
( ) 2 2 .f x x x= - -

Lo especial de este ejemplo
El radio de un casquete
cilíndrico cualquiera, que tiene
como altura f (x), es x − 1, y no
x como en los casos anteriores,
porque el sólido tiene como eje
de rotación a la recta x = 1.

La integral del volumen
En este caso, la integral del
volumen es:
( )
3
2
2
2 ( 1) 2 2V x x x dxp= - - -
ò

La integral del volumen
( )
3
2
2
3 3
2
2 2
2 ( 1) 2 2
4 ( 1) 2 ( 1) 2
V x x x dx
x dx x x xdx
p
p p
= - - -
= - - - -
ò
ò ò
La primera integral no tiene problema. Para evaluar la
segunda podemos hacer la sustitución u = x
2
− 2x.
Por lo tanto, du = 2(x − 1)dx.
Los límites de integración: si x = 2, entonces u = 0 y si
x = 3, entonces u = 3. Así:

La integral del volumen
3 3
1 2
2 0
3 3
2
3 2
02
4 ( 1)
2
4 6 2 3
2 3
V x dx u du
x
x u
p p
p p p p
= - -
é ù é ù
= - - = -
ê ú ê ú
ë ûë û
ò ò


Bibliografía y créditos

Edwards, Henry - Penney, David. Calculus: Early
Transcendetals Version, Sixth Edition, Prentice-Hall,
2003, Chapter 6.3. Volumes by the Method of
Cylindrical Shells, p. 419-427.
Stewart, James. Calculus: Early Transcendentals, Fifth
Edition, Brooks/Cole, 2003, Chapter 6.3: Volumes by
Cylindrical Shells, p. 455-459.

Swokowski, Earl. Cálculo con geometría analítica,
Grupo Editorial Iberoamérica, 1989, Capítulo 6.3.
Determinación de volúmenes mediante envolventes
cilíndricas, p. 297-301.

Varberg, Dale - Purcell, Edwin. Calculus, Seventh
Edition, Prentice-Hall, 1997, Chapter 6.3. Volumes of
Solids of Revolution: Shells, p. 313-319.

Las gráficas y las animaciones fueron realizadas por el
autor utilizando Maple 7 de Waterloo Maple Inc.
junto con el paquete Calplots desarrollado por Harald
Pleym. Para su posterior edición se utilizó el
programa GIF Construction Set Professional de
Alchemy MindWorks; para la edición de fórmulas
matemáticas, MathType 5 de Design Science Inc. y
para la elaboración de la presentación de diapositivas,
PowerPoint 2002 de Microsoft. Las fotografías
fueron tomadas por el autor.
FIN
Tags