El propósito de este trabajo es la introducción a la probabilidad y la estadística con el objetivo de familiarizarse con dicha materia.
Size: 5.1 MB
Language: es
Added: Jan 26, 2016
Slides: 35 pages
Slide Content
P robabilidad y Estadística
I ntroducción En la vida cotidiana aparecen muchas situaciones en las que los resultados observados son diferentes aunque las condiciones iniciales en las que se produce la experiencia sean las mismas . la probabilidad pretende ser una herramienta para modelizar y tratar con situaciones de este tipo; por otra parte, cuando aplicamos las técnicas estadísticas a la recogida, análisis e interpretación de los datos, la teoría de la probabilidad proporciona una base para evaluar la fiabilidad de las conclusiones alcanzadas y las inferencias realizadas. Debido al importante papel desempeñado por la probabilidad dentro de la estadística, es necesario familiarizarse con sus elementos básicos, lo que constituye el objetivo del presente tema.
C ONCEPTOS BÁSICOS
Definición de Estadística Conjunto de teorías y métodos que han sido desarrollados para tratar la recopilación, organización y análisis de datos o hechos numéricos, con el fin de sacar conclusiones.
Clasificación de la Estadística Según el tipo de investigación Estadística Descriptiva. Tiene por objetivo fundamental la descripción numérica de un conjunto de datos. No generaliza las conclusiones obtenidas a otros grupos de datos. Estadística Inferencial. Usa la información aportada por una muestra para sacar conclusiones de la población de la cual ha sido extraida; siempre recordando que existe la probabilidad de hacerlo en forma errada
Población, universo y muestra Universo : se define como el conjunto de sujetos o elementos que tienen una característica común, observable y susceptible de ser medida. Población : conjunto de todas las mediciones u observaciones hechas sobre una o varias de las características de los elementos del universo. Muestra : subconjunto de elementos del universo o la población.
Ejemplo Estudiantes regulares de la Universidad de los Andes. Universo Edad Rendimiento Carrera Ingresos Etc. Población
P arámetro : valor numérico que describe una característica de la población. Los parámetros se estiman a partir de la información aportada por una muestra de la población. Ejemplo : Si se considera como universo a todos los estudiantes regulares de la Universidad de Los Andes, la edad promedio de estos, el porcentaje de estudiantes de sexo femenino que fuman, el ingreso medio todos los estudiantes, son valores que describen a este conjunto.
Frecuencia absoluta : es el número de veces que se repite una observación o valor de la variable ( f ). Frecuencia relative : de una observación : es el cociente entre su frecuencia absoluta y el número total de observaciones realizadas ( f r ).
Variables. Clasificación. Variable : característica de un sujeto u objeto que varía de un elemento a otro. Las variables se pueden clasificar de acuerdo al nivel de medición. Contenido VARIABLES ESTADÍSTICAS CUANTITATIVAS Son medibles y se expresan por medio de un número CUALITATIVAS No se pueden medir y se expresan con palabras. Tiene distintas modalidades, que son las diferentes situaciones que se pueden presentar. Ejemplos : Sexo: Femenino – Masculino Color de ojos Color del cabello DISCRETAS Cuando solo pueden tomar algunos valores determinados. Ejemplos : Nº de padres vivos Nº de hermanos CONTINUAS Cuando pueden tomar infinitos valores comprendidos entre dos valores determinados. Ejemplos : Altura, peso, etc
E scalas de medición
Escalas Escalas de medición Escala Nominal Escala Ordinal Escala de Intervalo Escala de Razón
Escala Nominal Se clasifica a los sujetos en categorías, mutuamente excluyentes y totalmente exhaustivas, tal que todos los sujetos clasificados en la misma categoría son equivalentes respecto a la variable que se está midiendo. Sólo tiene sentido la relación de igualdad-desigualdad. Se pueden usar números, letras o símbolos para identificar a cada categoría de la variable. No se puede realizar ninguna operación aritmética en esta escala.
Escala Nominal Algunos ejemplos de variables medidas en la escala nominal: Género Masculino Femenino M F Estado civil Soltero Casado Divorciado Viudo 1 3 2 4
Escala Ordinal Se usa cuando es posible establecer una relación de orden entre las distintas categorías de la variable. Es decir, prevalece la relación de orden “mayor que” (>). Se pueden usar letras o números para identificar a cada categoría de la variable. Los números o letras usados deben reflejar el orden de las categorías. No se pueden realizar operaciones aritméticas entre los números asignados a las distintas categorías. Tales números solo reflejan una relación de orden.
Escala Ordinal Calidad de un servicio Mala Regular Buena Excelente D C B A
Escala de Intervalo. Posee una unidad de medida constante y arbitraria. Posee un cero “arbitrario”, es decir, no indica la ausencia de la característica que se está midiendo. Prevalece la relación de orden “mayor que” (>). Entre los valores de la variable solo es posible realizar la suma y la resta como operaciones aritméticas.
Escala de Intervalo Tres ejemplos de variables medidas en una escala de intervalo: La temperatura de una ciudad medida en grados Fahrenheit o Celsius. La altura de las ciudades usando como referencia el nivel del mar. El rendimiento académico medido en una escala del 0 al 20. Para cada variable mencionada el cero es “arbitrario”.
Escala de Razón. Posee una unidad de medida constante y arbitraria. Posee un cero “absoluto”, es decir, este valor indica la ausencia de la característica que se está midiendo. Prevalece la relación de orden “mayor que” (>). Se pueden realizar todas las operaciones aritméticas entre los valores de la variable.
Escala de Razón Algunas variables medidas en la escala de razón: Edad. Peso. Estatura. Tiempo invertido por un estudiante en realizar una tarea. Ingreso familiar.
Un error en estadística es la diferencia entre el valor de un estimador y el del parámetro correspondiente. Existen varias causas para producir estos errores. Según la causa son clasificados en errores de muestreo y de no muestreo. El error de no muestreo puede ocurrir en cualquier ENCUESTA, sea un censo o una muestra. Estos errores comprenden errores sistemáticos y equivocaciones. Los factores que causan error sistemático son: falta de definición clara de la población, inadecuada elaboración del marco de muestreo, falta de definición del cuestionario, vaga concepción de la información deseada, métodos imprecisos de entrevistas. Los errores de muestreo son resultado de la elección casual de unidades de muestreo. Este tipo de error ocurre porque solo se observa una parte de la población; así que si se hace un censo, puede esperarse que desaparezca el error de muestreo. Errores de medición
Las cifras significativas están determinadas por el error.
G ráficos
Gráficos Estadísticos Los gráficos estadísticos se utilizan muchísimo, y con ellos la información obtenida puede ser leída con claridad y rapidez. Los gráficos más usados son: diagramas de barras, gráficos circulares, pictogramas, histogramas, polígono de frecuencia . Para variables discretas: Para variables continuas: - diagramas de barras - histogramas - pictogramas - polígono de frecuencia - gráfico de torta - gráfico de torta
Diagramas de barra : Se construyen con rectángulos.
Gráfico de torta : Para armar el gráfico circular correspondiente, dividimos el círculo en sectores, según los porcentajes obtenidos Al círculo, que representa el 100 %, le corresponde un ángulo central de 360°. Por lo tanto, para hallar la amplitud del ángulo correspondiente a un sector que representa un 30%, por ejemplo, hacemos:
Pictogramas : En ellos se recurre a dibujos relacionados con el tema tratado
Histogramas y polígono de frecuencia
A plicaciones
Conclusión Con todo lo aprendido, podemos concluir que la estadística es una rama de la matemática que está no se encuentra muy visible en lo cotidiano pero que en realidad es de mucha utilidad para interpretar y ver desde un punto de vista muy general datos que se obtienen. A través de sus gráficas, medidas de tendencia central y de dispersión podemos ver mas claro y concreto un conjunto de datos que se nos hacen muy complicados, en resumen son un verdadero método de ayuda para informar.