REFERENCES Mulvaney , P. (2015). Nanoscience vs nanotechnology-defining the field. In ACS Nano (Vol. 9, Issue 3, pp. 2215–2217). American Chemical Society. https://doi.org/10.1021/acsnano.5b01418 Valgimigli , L., Baschieri , A., & Amorati , R. (2018). Antioxidant activity of nanomaterials. In Journal of Materials Chemistry B (Vol. 6, Issue 14, pp. 2036–2051). Royal Society of Chemistry. https://doi.org/10.1039/c8tb00107c Oladoye , P. O., Bamigboye , M. O., Ogunbiyi , O. D., & Akano , M. T. (2022). Toxicity and decontamination strategies of Congo red dye. Groundwater for Sustainable Development , 19 , 100844. https://doi.org/10.1016/J.GSD.2022.100844 Siddiqui, S. I., Allehyani , E. S., Al- Harbi , S. A., Hasan, Z., Abomuti , M. A., Rajor , H. K., & Oh, S. (2023). Investigation of Congo Red Toxicity towards Different Living Organisms: A Review. Processes , 11 (3), 807. https://doi.org/10.3390/pr11030807 Dobrucka , R. (2018). Antioxidant and Catalytic Activity of Biosynthesized CuO Nanoparticles Using Extract of Galeopsidis herba . Journal of Inorganic and Organometallic Polymers and Materials , 28 (3), 812–819. https://doi.org/10.1007/s10904-017-0750-2 Chavali , M. S., & Nikolova , M. P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. In SN Applied Sciences (Vol. 1, Issue 6). Springer Nature. https://doi.org/10.1007/s42452-019-0592-3 Yoon, Y., Truong, P. L., Lee, D., & Ko , S. H. (2022). Metal-Oxide Nanomaterials Synthesis and Applications in Flexible and Wearable Sensors. In ACS Nanoscience Au (Vol. 2, Issue 2, pp. 64–92). American Chemical Society. Immanuel, S., Aparna, T. K., & Sivasubramanian , R. (2018). Graphene-metal oxide nanocomposite modified electrochemical sensors. In Graphene-Based Electrochemical Sensors for Biomolecules: A Volume in Micro and Nano Technologies (pp. 113–138). Elsevier. https://doi.org/10.1016/B978-0-12-815394-9.00005-4 Duy , H. H., Ngoc, P. T. K., Anh, L. T. H., Dao, D. T. A., Nguyen, D. C., & Than, V. T. (2019). In vitro antifungal efficacy of white radish ( Raphanus sativus L.) root extract and application as a natural preservative in sponge cake. Processes , 7 (9). https://doi.org/10.3390/pr7090549 Nikam , A. v., Prasad, B. L. V., & Kulkarni, A. A. (2018). Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm , 20 (35), 5091–5107. https://doi.org/10.1039/C8CE00487K Pal, G., Rai, P., & Pandey, A. (2018). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green Synthesis, Characterization and Applications of Nanoparticles (pp. 1–26). Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00001-0 Ariyanta , H. A., Ivandini , T. A., & Yulizar , Y. (2021). Novel NiO nanoparticles via phytosynthesis method: Structural, morphological and optical properties. Journal of Molecular Structure , 1227 . https://doi.org/10.1016/j.molstruc.2020.129543 Shyam , A., Chandran S, S., George, B., & E, S. (2021). Plant mediated synthesis of AgNPs and its applications: an overview. In Inorganic and Nano-Metal Chemistry (Vol. 51, Issue 12, pp. 1646–1662). Taylor and Francis Ltd. https://doi.org/10.1080/24701556.2020.1852254 Kim, D. M., Busch, M., Hoefsloot , H. C. J., & Iedema , P. D. (2004). Molecular weight distribution modeling in low-density polyethylene polymerization; impact of scission mechanisms in the case of CSTR. Chemical Engineering Science , 59 (3), 699–718. https://doi.org/10.1016/J.CES.2003.11.008 Lee, N. Y., Ko , W. C., & Hsueh, P. R. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. In Frontiers in Pharmacology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fphar.2019.01153 Ssekatawa , K., Byarugaba , D. K., Kato, C. D., Wampande , E. M., Ejobi , F., Nakavuma , J. L., Maaza , M., Sackey , J., Nxumalo , E., & Kirabira , J. B. (2021). Green Strategy–Based Synthesis of Silver Nanoparticles for Antibacterial Applications. Frontiers in Nanotechnology , 3 . https://doi.org/10.3389/fnano.2021.697303 Thomas, R., Nair, A. P., Kr, S., Mathew, J., & Ek , R. (2014). Antibacterial activity and synergistic effect of biosynthesized AgNPs with antibiotics against multidrug-resistant biofilm-forming coagulase-negative staphylococci isolated from clinical samples. Applied Biochemistry and Biotechnology , 173 (2), 449–460. https://doi.org/10.1007/s12010-014-0852-z Wang, Y., O’Connor, D., Shen, Z., Lo, I. M. C., Tsang, D. C. W., Pehkonen , S., Pu, S., & Hou , D. (2019). Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. In Journal of Cleaner Production (Vol. 226, pp. 540–549). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.04.128 MODAN, E. M., & PLĂIAȘU, A. G. (2020). Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials. The Annals of “ Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science , 43 (1), 53–60. https://doi.org/10.35219/mms.2020.1.08 Sanjay, S. S. (2018). Safe nano is green nano . In Green Synthesis, Characterization and Applications of Nanoparticles (pp. 27–36). Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00002-2 Rana, A., Yadav, K., & Jagadevan , S. (2020). A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. In Journal of Cleaner Production (Vol. 272). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.122880 Singh, J., Dutta, T., Kim, K. H., Rawat , M., Samddar , P., & Kumar, P. (2018). “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. In Journal of Nanobiotechnology (Vol. 16, Issue 1). BioMed Central Ltd. https ://