Protein-protein interaction networks

bcbbslides 3,428 views 80 slides May 02, 2017
Slide 1
Slide 1 of 80
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80

About This Presentation

Protein-protein interaction networks


Slide Content

Protein‐Protein
Interac-on
Networks

Predic-on,
Visualiza-on
and
Analysis

Vijayaraj
Nagarajan
PhD

Computa4onal
Molecular
Biology
Specialist

Bioinforma4cs
and
Computa4onal
Biosciences
Branch

Na4onal
Ins4tute
of
Allergy
and
Infec4ous
Diseases


Office
of
Cyber
Infrastructure
and
Computa4onal
Biology


Outline

• Introduc4on
to
Interac4on
Networks

• Basic
components
of
an
interac4on
network

• Types
of
interac4on
networks

• Predic4ng
Protein‐Protein
Interac4on
Networks

• Methods

» Logic
and
concept

• Available
Interac4on
data

• Integrated
protein‐protein
interac4on
databases

• Searching
for
interac4on
data

• Network
Visualiza4on
and
Analysis
tools

• Popular
visualiza4on
tools

• Network
analysis

• Demonstra4on

• Predic4on
of
interac4on
(PPI…?)
network
from
microarray
(ARACNE)

• Visualiza4on
and
analysis
of
the
predicted
network
(Cytoscape)


• Nodes

– DNA/RNA/Protein/Metabolite

• Edges

Directed

– Dis4nc4on
between
source
and
target

» Ac4va4on
(direct/indirect)

» Repression
(direct/indirect)

Undirected

– No
dis4nc4on
between
source
and
target

» Co‐expression
(indirect)

» Binding
(direct)

Interac-on
Networks
–
Basic
Components


Interac-on
Networks
‐
Basic
Features

• Degree

• Number
of
connec4ons
that
a
node
has

• Distance

• Number
of
connec4ons
between
two

nodes,
in
a
shortest
path

• Path

• A
sequence
of
connec4ons

• Is
there
a
path
(reachability)

• Mean
Shortest
Path
distance
(closeness)

• In
how
many
shortest
paths

(betweenness)


• Size
of
a
network
(Number
of
nodes)

• Density
of
a
network
(Propor4on
of
the
connec4ons)

• Mo4fs/Cliques/Clusters/Sub‐networks

Loops
Chains
Parallels
Multi-input Single input
Interac-on
Networks
‐
Basic
Features


Types
of
Interac-on
Networks

• DNA‐Protein

» Transcrip4onal
regulatory
networks

» Methyla4on
networks

• RNA‐RNA

» miRNA
regulatory
networks

• RNA‐Protein

» Splicing
regulatory
networks

• Protein‐Protein

» Co‐expression
networks

» Co‐localiza4on
networks

» Co‐evolu4on
networks

» Structure
networks

» Pathway
networks

» Protease
regulatory
networks

» Signal
transduc4on
networks

» Gene
Ontology
networks


Single
gene




– Regulators/Co‐regulators

– Upstream/Downstream
elements
in
the
network

– Global
connec4vity/interconnec4vity

– Func4onal
features

– Differen4ally
expressed
subnetworks

– One
gene
–
one
disease
:
bunch
of
genes
–
pathways

– Nextgen
sequencing
data

List of genes
Why
Build/Analyze
Interac-on
Networks
?


Outline

• Introduc4on
to
Interac4on
Networks

• Basic
components
of
an
interac4on
network

• Types
of
interac4on
networks

• Predic4ng
Protein‐Protein
Interac4on
Networks

• Methods

» Logic
and
concept

• Available
Interac4on
data

• Integrated
protein‐protein
interac4on
databases

• Searching
for
interac4on
data

• Network
Visualiza4on
and
Analysis
tools

• Popular
visualiza4on
tools

• Network
analysis

• Demonstra4on

• Predic4on
of
interac4on
(PPI…?)
network
from
microarray
(ARACNE)

• Visualiza4on
and
analysis
of
the
predicted
network
(Cytoscape)


How
to
Build
Interac-on
Networks
?


• Search/Retrieve
from
knowledge
bases

• Predict
from
genome
sequences

• Predict
from
“omics”
data

• Predict
from
literature

• Integrate
and
analyze


Protein Engineering, Vol. 14, No. 9, 609-614, September 2001
Predic-on
from
genome
sequences

• Gene
neighbor
(gene
cluster,
gene
order)

• Gene
fusion
(Rose\a
stone)

• Phylogene4c
profiling

• Co‐evolu4on

• Mirror
tree


Predic-on
from
“omics”
data

• Co‐expression
(Correla4on,
Mutual
Informa4on)

• Integrated
(Classifica4on)

• Literature
mining
(Natural
Language
Processing)


Outline

• Introduc4on
to
Interac4on
Networks

• Basic
components
of
an
interac4on
network

• Types
of
interac4on
networks

• Predic4ng
Protein‐Protein
Interac4on
Networks

• Methods

» Logic
and
concept

• Available
Interac4on
data

• Integrated
protein‐protein
interac4on
databases

• Searching
for
interac4on
data

• Network
Visualiza4on
and
Analysis
tools

• Popular
visualiza4on
tools

• Network
analysis

• Demonstra4on

• Predic4on
of
interac4on
(PPI…?)
network
from
microarray
(ARACNE)

• Visualiza4on
and
analysis
of
the
predicted
network
(Cytoscape)


Available
Interac-on
Data

• MINT

• Molecular
Interac4on
Database

• BIND

• Biomolecular
Interac4on
Network
Database

• DIP

• Database
of
Interac4ng
Proteins

• IntAct

• InterAc4on
Database
at
EBI


Integrated
Data
Sources

• Pathway
Commons

• BioGRID

• MiMI
(Michigan
Molecular
Interac4ons)

• STRING
(Search
Tool
for
Retrieval
of
Interac4ng
Genes/Proteins)

• Genes2Network

• VisANT
(Integra4ve
Visual
Analysis
Tool)


• BIOBASE

• IPA
(Ingenuity
Pathway
Analysis)

• MetaCore

Open Source
Proprietary

IP3Rs

• Inositol
triphosphate
receptor

• ip3r1

• ip3r2

• ip3r3

» Calcium
ion
channels

» ER

• s4m1
(stromal
interac4on
molecule
1)

» PM

» Calcium
sensor
protein

• orai1
(calcium
release
ac4vated
calcium
modulator)

» PM

» Accessory
protein
downstream
of
s4m1


Searching
for
Interac-on
Data

STRING

IPA


IPA


Outline

• Introduc4on
to
Interac4on
Networks

• Basic
components
of
an
interac4on
network

• Types
of
interac4on
networks

• Predic4ng
Protein‐Protein
Interac4on
Networks

• Methods

» Logic
and
concept

• Available
Interac4on
data

• Integrated
protein‐protein
interac4on
databases

• Searching
for
interac4on
data

• Network
Visualiza4on
and
Analysis
tools

• Popular
visualiza4on
tools

• Network
analysis

• Demonstra4on

• Predic4on
of
interac4on
(PPI…?)
network
from
microarray
(ARACNE)

• Visualiza4on
and
analysis
of
the
predicted
network
(Cytoscape)


• Cytoscape

• VisANT
(Integra4ve
Visual
Analysis
Tool)

• Osprey

• BioLayout

Popular
Visualiza-on
Tools


VisANT


Analysis
Tools

• Phunkee
(Pairing
subgraphs
Using
Network
Environment
Equivalence
–
finds

similar
subnets)

• mfinder
(mo4f
detec4on)

• MAVisto
(Mo4f
Analysis
and
Visualiza4on
tool
–
explora4on
of
mo4fs)

• GraphMatch
(Search
for
similar
sub‐nets)

• NeAT
(Network
Analysis
Tools
–
mo4f
finding,
node
sta4s4cs)

• Cfinder
(Finds
clusters
–
dense
group
of
nodes)

• NetworkBLAST
(Compares
mul4ple
networks
to
infer
complexes
&
paths)


Outline

• Introduc4on
to
Interac4on
Networks

• Basic
components
of
an
interac4on
network

• Types
of
interac4on
networks

• Predic4ng
Protein‐Protein
Interac4on
Networks

• Methods

» Logic
and
concept

• Available
Interac4on
data

• Integrated
protein‐protein
interac4on
databases

• Searching
for
interac4on
data

• Network
Visualiza4on
and
Analysis
tools

• Popular
visualiza4on
tools

• Network
analysis

• Demonstra4on

• Predic4on
of
interac4on
(PPI…?)
network
from
microarray
(ARACNE)

• Visualiza4on
and
analysis
of
the
predicted
network
(Cytoscape)


PPI
Predic-on
Using
Microarray
Data

• Co‐expression
concept

• Correla4on
Coefficient

» SIMoNE
(Sta4s4cal
Inference
for
Modular
Networks)
‐
R

• Mutual
Informa4on

» Reference
Networks

» ARACNE
(Algorithm
for
Reconstruc4on
of
Accurate
Cellular

Networks)
–
R,
geWorkbench

» CLR
(Context
Likelihood
of
Relatedness)
–
R

» MRNET
(Maximum
Relevance/Minimum
Redundancy)
–
R

» MONET
(Modularized
NETwork
Learning)
‐
Cytoscape

• Bayesian
Network


PPI
Predic-on
Using
Microarray
Data

• Melanoma
metastasis

• 83
samples

• Affymetrix

• GEO

• ARACNE

• geWorkbench

• IP3R1,
IP3R2,
IP3R3,
STIM1,
ORAI1


GML File

Predicted
PPI
Network

• Could
form
a
complex

• Could
be
func4onally
associated

• Could
be
involved
in
a
same
metabolic
pathway

• Could
be
involved
in
a
specific
signal
transduc4on
path

• False
posi4ve


Visualiza-on
and
Analysis
Using
Cytoscape

• Cytoscape

• Opensource

• Works
in
Windows,
Linux,
Mac

• One
of
the
first
developed
tools

• Great
number
of
PLUGINS

• Excellent
help
from
community


Literature
Based
PPI
Predic-on


Using
Cytoscape


Retrieving
PPI
Using
Cytoscape


Data
Visualiza-on,
Integra-on,
Analysis

• Import
ARACNE
predicted
network

• Import
VisANT
retrieved
network

• Merge
all
networks

• Mo4f
finding


NetCirChro
(Networks
on
Circular
Chromosomes
)
‐
Citrate
cycle

B.
sub'lis
E.
coli

 S.
typhi
 S.
aureus

Gram-negative Bacteria Gram-positive Bacteria

[email protected]
Thank
You