from scipy.interpolate import interp1d
x = [0,1,2,3]
y = [0,1,4,9]
f = interp1d(x, y, kind='quadratic')
print(f(2.5)) # Interpolated value
✅ Use cases: Missing data filling, curve fitting, engineering simulations
8. Signal Processing scipy.signal
→
Filters, convolution, FFT-based tools.
from scipy import signal
b,a = signal.butter(3, 0.5) # 3rd-order low-pass filter
w,h = signal.freqz(b,a) # Frequency response
print(signal.convolve([1,2,3],[0,1,0.5])) # Convolution
✅ Use cases: Audio processing, biomedical signals (EEG, ECG), communications.
9. Fourier Transforms scipy.fft
→
Fast Fourier Transforms.
from scipy.fft import fft, ifft
x = np.array([1,2,3,4])