Q1W3D2 CONVERSION OF COMPUTER NUMBER SYSTEMS (BINARY TO DECIMAL).pptx

JessalynReybuenan 31 views 43 slides Sep 09, 2024
Slide 1
Slide 1 of 43
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43

About This Presentation

Binary to Decimal


Slide Content

) ) ) ) ) ) ) ) ) Dear Lord and Father of all, Thank you for today. Thank you for ways in which you provide for us all. For Your protection and love we thank you. Help us to focus our hearts and minds now on what we are about to learn. Inspire us by Your Holy Spirit as we listen and write. Guide us by your eternal light as we discover more about the world around us. We ask all this in the name of Jesus. Amen. ) ) ) ) ) ) ) ) ) PRAYER

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) QUARTER 1- WEEK3 - DAY 2

) ) ) ) ) ) ) ) ) Change the order of the following steps in the conversion of decimal to binary. ) ) ) ) ) ) ) ) ) REVIEW Divide the number by two. Get the quotient and divide it again by two. Write the quotient and remainder in its column. Write the quotient and the remainder on its corresponding column. Copy the remainder from bottom to top. That is the binary equivalent of the number. Continue dividing until the quotient results in zero. Always write its quotient and remainder in their column.

) ) ) ) ) ) ) ) ) Change the order of the following steps in the conversion of decimal to binary. ) ) ) ) ) ) ) ) ) REVIEW Divide the number by two. Get the quotient and divide it again by two. Write the quotient and remainder in its column. Write the quotient and the remainder on its corresponding column. Copy the remainder from bottom to top. That is the binary equivalent of the number. Continue dividing until the quotient results in zero. Always write its quotient and remainder in their column.

CONVERSION OF COMPUTER NUMBER SYSTEMS Conversion of Binary to Decimal

) ) ) ) ) ) ) ) ) CONTENT STANDARDS Demonstrate an understanding of conversion of computer number systems. ) ) ) ) ) ) ) ) )

) ) ) ) ) ) ) ) ) LEARNING COMPETENCIES Apply conversion of computer number systems. ) ) ) ) ) ) ) ) )

) ) ) ) ) ) ) ) ) LEARNING OUTCOMES Identify the steps in the conversion of binary to decimal. Convert binary to decimal. Appreciate the significance of learning conversion of the number system. ) ) ) ) ) ) ) ) )

) ) ) ) ) ) ) ) ) Check or Verify - make sure or demonstrate that (something) is true, accurate. Superscript - a letter, figure, or symbol written or printed above the line. Subscript - a letter, figure, or symbol written or printed below the line. ) ) ) ) ) ) ) ) ) REMEMBER!

) ) ) ) ) ) ) ) ) 1. Divide: quotient. Multiply: _______ 2. Decimal: ten Binary: ___ 3. Convert: translate Check: ______ 4. Subscript: Base ___________: Exponent ) ) ) ) ) ) ) ) ) Word Analogy product two verify superscript

) ) ) ) ) ) ) ) ) Binary uses the base of 2 and it has only two (2) symbols which are zero (0) and one (1). The conversion of numbers from binary to decimal is important as it helps to read numbers that are represented as a set of zeros (0s) and ones (1s). ) ) ) ) ) ) ) ) )

) ) ) ) ) ) ) ) ) Step 1. Starting with the rightmost digit, list all of the exponents of 2. The first power would be 20 and as we move on to the left side. ) ) ) ) ) ) ) ) ) place value method

) ) ) ) ) ) ) ) ) Step 2: Now multiply each digit in the binary number starting from the right with its respective weight based on its position and evaluate the product. ) ) ) ) ) ) ) ) ) place value method

) ) ) ) ) ) ) ) ) Step 3: Finally, sum up all the products obtained for all the digits in the binary number. ) ) ) ) ) ) ) ) ) place value method

) ) ) ) ) ) ) ) ) Step 1: Start with a table of binary column values. ) ) ) ) ) ) ) ) ) table method

) ) ) ) ) ) ) ) ) Step 2: Write the given binary number in the columns. ) ) ) ) ) ) ) ) ) table method

) ) ) ) ) ) ) ) ) Step 3: Add each of the columns with values of 1. ) ) ) ) ) ) ) ) ) table method

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) table method

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ACTIVITY: place value method 1. 11011 16 + 8 + 2 + 1= 27 1 1 1 1 1 x 2 = 1 1 x 2 1 = 2 0 x 2 2 = 0 1 x 2 3 = 8 1 x 2 4 = 16    

) ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 ) ) ) ) ) ) ) ) ACTIVITY: table method 1 2 3 4 5 6 7 1. 11011

) ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 1 ) ) ) ) ) ) ) ) ACTIVITY: table method 1. 11011 1 2 3 4 5 6 7 16 + 8 + 2 + 1= 27

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 2. 110100 1 1 1 x 2 = 0 x 2 1 = 0 1 x 2 2 = 4 x 2 3 = 0 1 x 2 4 = 16 1 x 2 5 = 32     32 + 16 + 4 = 52 ACTIVITY: place value method

) ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 ) ) ) ) ) ) ) ) ACTIVITY: table method 2. 110100 1 2 3 4 5 6 7

) ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 ) ) ) ) ) ) ) ) ACTIVITY: table method 2. 110100 1 2 3 4 5 6 7 32 + 16 + 4 = 52

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 3. 01001100 64 + 8 + 4 = 76 1 1 x 2 = 0 x 2 1 = 0 1 x 2 2 = 4 1 x 2 3 = 8 x 2 4 = 0 x 2 5 = 0 1 x  2 6 = 64   1 ACTIVITY: place value method

) ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 ) ) ) ) ) ) ) ) ACTIVITY: table method 3. 01001100 1 2 3 4 5 6 7

) ) ) ) ) ) ) ) ) 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 ) ) ) ) ) ) ) ) ACTIVITY: table method 3. 01001100 1 2 3 4 5 6 7 64 + 8 + 4 = 76

) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

1. Why do we need to learn to convert Binary to decimal? How does conversion help you as a learner?

2. How can you apply your learning in the conversion in your daily life? Explain your answer.

) ) ) ) ) ) ) ) ) Directions: Convert the following binary to decimal. Show your solution. (You can choose between place value method and table method.) 1. 11011 2 2. 101101 2 3. 111011 2 4. 010101 2 5. 1010101 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment

) ) ) ) ) ) ) ) ) 1. 11011 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 16+8+2+1 = 27 10 1 1 1 1 1 x 2 = 1 1 x 2 1 = 2 0 x 2 2 = 0 1 x 2 3 = 8 1 x 2 4 = 16  

) ) ) ) ) ) ) ) ) 1. 11011 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 1 16+8+2+1 = 27 10 1 2 3 4 5 6 7

) ) ) ) ) ) ) ) ) 2. 101101 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 32+8+4+1 = 45 10 1 1 1 1 1 x 2 = 1 x 2 1 = 0 1 x 2 2 = 4 1 x 2 3 = 8 x 2 4 = 0 1 x 2 5 = 32  

) ) ) ) ) ) ) ) ) 2. 101101 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 1 32+8+4+1 = 45 10 1 2 3 4 5 6 7

) ) ) ) ) ) ) ) ) 3. 111011 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 32+16+8+2+1 = 59 10 7 1 1 1 1 1 1 x 2 = 1 1 x 2 1 = 2 0 x 2 2 = 0 1 x 2 3 = 8 1 x 2 4 = 16 1 x 2 5 = 32  

) ) ) ) ) ) ) ) ) 3. 111011 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 1 1 32+16+8+2+1 = 59 10 1 2 3 4 5 6 7

) ) ) ) ) ) ) ) ) 4. 010101 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 16+4+1 = 21 10 1 1 1 1 x 2 = 1 x 2 1 = 0 1 x 2 2 = 4 x 2 3 = 0 1 x 2 4 = 16 x 2 5 = 0  

) ) ) ) ) ) ) ) ) 4. 010101 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 16+4+1 = 21 10 1 2 3 4 5 6 7

) ) ) ) ) ) ) ) ) 5. 1010101 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 64+16+4+1 = 85 10 1 1 1 1 x 2 = 1 x 2 1 = 0 1 x 2 2 = 4 x 2 3 = 0 1 x 2 4 = 16 x 2 5 = 0 1 x  2 6 = 64   1

) ) ) ) ) ) ) ) ) 5. 1010101 2 ) ) ) ) ) ) ) ) ) FormatIve Assessment 2 2 2 2 2 2 2 2 128 64 32 16 8 4 2 1 1 1 1 1 64+16+4+1 = 85 10 1 2 3 4 5 6 7

) ) ) ) ) ) ) ) ) Directions: Convert the following binary to decimal. Show your solution. 10110 2 1111 2 101001 2 100110 2 100 2 ) ) ) ) ) ) ) ) ) homework

THANK YOU FOR LISTENING!
Tags