Q4W5.lines and segment are perpendicular

ricomindua 33 views 46 slides Sep 08, 2024
Slide 1
Slide 1 of 46
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46

About This Presentation

Determining the conditions under which lines and segments are perpendicular


Slide Content

DETERMINING THE CONDITIONS UNDER WHICH LINES AND SEGMENTS ARE PERPENDICULAR Quarter 4 – Week 5

Objectives: At the end of the discussion, the students will be able to: Identify the properties of parallel lines and perpendicular lines; Prove the conditions under which lines and segments are parallel or perpendicular: and Apply properties of parallel and perpendicular lines to real life situations.

Statements Reasons ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Given m∠1= m∠2 Definition of Right Angles m∠2= 90° g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given Definition of Supplementary m∠1+ m∠2 = 180° Given m∠1= m∠2 Definition of Right Angles m∠2= 90° g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Given m∠1= m∠2 Definition of Right Angles m∠2= 90° g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Definition of Linear Pair Given m∠1= m∠2 Definition of Right Angles m∠2= 90° g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Definition of Linear Pair ∠1 ≅ ∠2 Given m∠1= m∠2 Definition of Right Angles m∠2= 90° g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Definition of Linear Pair ∠1 ≅ ∠2 Given m∠1= m∠2 Definition of Congruent Angles Definition of Right Angles m∠2= 90° g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Definition of Linear Pair ∠1 ≅ ∠2 Given m∠1= m∠2 Definition of Congruent Angles m∠1= 90° Definition of Right Angles m∠2= 90° g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Definition of Linear Pair ∠1 ≅ ∠2 Given m∠1= m∠2 Definition of Congruent Angles m∠1= 90° Definition of Right Angles m∠2= 90° Definition of Right Angles g ⊥ h

Statements Reasons ∠1 and ∠2 are linear pair Given ∠1 and ∠2 are linear pair Definition of Supplementary m∠1+ m∠2 = 180° Definition of Linear Pair ∠1 ≅ ∠2 Given m∠1= m∠2 Definition of Congruent Angles m∠1= 90° Definition of Right Angles m∠2= 90° Definition of Right Angles g ⊥ h Definition of Perpendicular Line

Statements Reasons b ⊥ a ∠1 is a right angle m∠1= 90° m∠4= 90° ∠1 and ∠2 are linear pair m∠1+ m∠2 = 180° m∠2 = 90° m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle m∠1= 90° m∠4= 90° ∠1 and ∠2 are linear pair m∠1+ m∠2 = 180° m∠2 = 90° m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° m∠4= 90° ∠1 and ∠2 are linear pair m∠1+ m∠2 = 180° m∠2 = 90° m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° Definition of Right Angle m∠4= 90° ∠1 and ∠2 are linear pair m∠1+ m∠2 = 180° m∠2 = 90° m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° Definition of Right Angle m∠4= 90° Vertical Angle are Congruent ∠1 and ∠2 are linear pair m∠1+ m∠2 = 180° m∠2 = 90° m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° Definition of Right Angle m∠4= 90° Vertical Angle are Congruent ∠1 and ∠2 are linear pair Given m∠1+ m∠2 = 180° m∠2 = 90° m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° Definition of Right Angle m∠4= 90° Vertical Angle are Congruent ∠1 and ∠2 are linear pair Given m∠1+ m∠2 = 180° Definition of Linear Pair m∠2 = 90° m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° Definition of Right Angle m∠4= 90° Vertical Angle are Congruent ∠1 and ∠2 are linear pair Given m∠1+ m∠2 = 180° Definition of Linear Pair m∠2 = 90° Definition of Right Angle m∠3 = 90° ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° Definition of Right Angle m∠4= 90° Vertical Angle are Congruent ∠1 and ∠2 are linear pair Given m∠1+ m∠2 = 180° Definition of Linear Pair m∠2 = 90° Definition of Right Angle m∠3 = 90° Vertical Angle Theorem ∠3, and ∠4 are right angles.

Statements Reasons b ⊥ a Given ∠1 is a right angle Definition of Perpendicular Lines m∠1= 90° Definition of Right Angle m∠4= 90° Vertical Angle are Congruent ∠1 and ∠2 are linear pair Given m∠1+ m∠2 = 180° Definition of Linear Pair m∠2 = 90° Definition of Right Angle m∠3 = 90° Vertical Angle Theorem ∠3, and ∠4 are right angles. Definition of Right Angle / Perpendicular Lines

Right angles are congruent

Right angles are congruent

Right angles are congruent

Right angles are congruent

Right angles are congruent

Right angles are congruent

Right angles are congruent

Right angles are congruent

LET US TRY!

Can you identify what I am?

Can you identify what I am? Antenna

If two lines intersect to form a _____ of congruent angles, then the lines are perpendicular. If two lines are ______, then they intersect to form four right angles. If a transversal is perpendicular to one of two ______ lines, then it is perpendicular to the other. In a plane, if two lines are perpendicular to the ____ line, then they are parallel to each other. Sum it up!

Prove the given using two-column proof.

—Rico M. Villalon “Thank You for listening!”