QAM -Lec16 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

hammedgweaa 11 views 24 slides Aug 31, 2025
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

Cummenication system


Slide Content

Dr. Suad El-Geder
EC 331
Computer Engineer Department
QAM
LECTURE 16

▪M-aryModulation:TransmittingMoreBitsPerSymbol
▪M-arymodulation(pronounced"M-airy")isafundamentalconceptindigital
communicationthatreferstoanymodulationschemewhereasinglesymbolcanrepresent
morethanonebitofinformation.
▪The"M"inM-arystandsforthenumberofdistinctsymbolsthatthemodulationscheme
canuse.Sinceeachsymbolcarriesacertainnumberofbits,increasingMallowsfora
higherdatarateforagivenbandwidth.

▪TounderstandM-ary,it'scrucialtodistinguishbetweenabitandasymbol:
oBit:Abinarydigit(0or1),thesmallestunitofdigitalinformation.
oSymbol:Adistinctwaveform,state,orsignalcharacteristic(e.g.,aspecificamplitude,phase,orfrequency)that
representsagroupofbits.
▪In M-arymodulation, each symbol represents kbits, where M=2
??????
. Therefore, k=log
2??????.
▪Examples:
oIf M=2 (e.g., BPSK, Binary PSK), then k=log
22​=1 bit per symbol. This is the simplest case, often not explicitly
called M-ary, but it technically is M=2.
oIf M=4 (e.g., QPSK, Quadrature PSK), then k=log
24=2 bits per symbol.
oIf M=8 (e.g., 8-PSK, 8-FSK, or some 8-QAM), then k=log
28​=3 bits per symbol.

▪TheprimarymotivationsforusingM-arymodulationschemesare:
1.IncreasedSpectralEfficiency:Foragivenbandwidth,M-arymodulationallowsyoutotransmit
morebitspersecond.Sinceeachsymbolcarriesmorebits,thesymbolrate(symbolspersecond)can
belowerthanthebitrate,whichtranslatestoanarrowerbandwidthrequirementforagivenbitrate.
oAnalogy:Imagineatrain.Ifeachtraincar(symbol)carriesonlyonepassenger(bit),youneedmanycars.
Ifeachcar(symbol)cancarry8passengers(bits),youneedfewercarsforthesamenumberofpassengers,
andthusashortertrain(lessbandwidth).
2.HigherDataRates:Conversely,forafixedbandwidth,M-arymodulationdirectlytranslatestohigher
achievabledatarates(bitspersecond).Thisiscrucialformodernapplicationslikehigh-definition
videostreaming,5Gwirelesscommunication,andfiberopticnetworks.

▪QuadratureAmplitudeModulationisamethodofamplitudemodulationthatallowstwodifferentsignalssent
simultaneouslyonthesamecarrierfrequency,effectivelydoublingthebandwidththatcanbetransmitted.
▪Bymodulatingtwocarriersatexactlythesamefrequency,butshiftedby90◦,boththeamplitude(ASK)and
phase(PSK)ofthecarrierismodulated:QAM.
▪NobinaryQAMmethods(M=2
1
=2),butlotsofhigher-orderQAM:
1)4QAM(M=2
2
=4signallevels;2bitspersymbol,likeQPSK)
2)16QAM(M=2
3
=8signallevels;3bitspersymbol)
3)16QAM(M=2
4
=16signallevels;4bitspersymbol)
4)64QAM(M=2
6
=64signallevels;6bitspersymbol)
5)256QAM(M=2
8
=256signallevels;8bitspersymbol)...etc.

▪Baudreferstotherateofchangeofasignalonthetransmissionmediumafterencodingandmodulation
haveoccurred.
▪Hence,baudisaunitoftransmissionrate,modulationrate,orsymbolrateand,therefore,thetermssymbols
persecondandbaudareoftenusedinterchangeably.
▪Mathematically,baudisthereciprocalofthetimeofoneoutputsignalingelement,andasignalingelement
mayrepresentseveralinformationbits.Baudisexpressedas
baud =
1
�
??????
✓wherebaud=symbolrate(baudpersecond).??????
�=timeofonesignalingelement(seconds).

▪InformationCapacity,Bits,andBitRate:
owhereI=informationcapacity(bitspersecond)
oB=bandwidth(hertz)
o=transmissiontime(seconds)
▪FromEquation1,itcanbeseenthatinformationcapacityisalinearfunctionofbandwidthand
transmissiontimeandisdirectlyproportionaltoboth.
▪Ifeitherthebandwidthorthetransmissiontimechanges,adirectlyproportionalchangeoccursinthe
informationcapacity.
▪Thehigherthesignal-to-noiseratio,thebettertheperformanceandthehighertheinformationcapacity.
Equation 1

▪Mathematically stated, the Shannon limit_forinformation capacity is:
owhere I = information capacity (bps)
oB = bandwidth (hertz)
o
??????
??????
= signal-to-noise power ratio (unitless)
▪In addition, since baud is the encoded rate of change, it also equals the bit rate divided by the number of
bits encoded into one signaling element. Thus,
oWhere, ??????
??????=channelcapacity(bps)
oN is the number of bits encoded into each signaling element.

▪Example:Inadigitaltelephoneexchangevoicesignalisdigitalizedusing8-bitsPCM.Calculatefinal
bitrateofsystem.Voice:300HZ–3.4KH.
▪fs≥2fmsamples/sec
Criticalrate/Nyquistrate:fs=2fm
⇒fs=2×3.4k=6800samples/sec
Bitrate:??????
�=n.fsbits/sec
=8bits/sample×6800samples/sec=54400bits/sec

2
Note:
ForbinaryPCM(assumingaNyquistpulseshape,
whichistypicalfortheoreticalcalculationsunless
otherwisespecified),theminimumtransmission
bandwidthrequiredishalfofthebitrate.Thisis
alsoknownastheNyquistbandwidthorminimum
bandwidthforbasebandtransmission.

▪Example 4: From the plot in the figure shown:
Solution:

Example :
Solution:

Homework

Question 3:

Question :
Solution:

Question :
Solution:

Question 6:
Solution:
Tags